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Abstract—With the increasing diversity of mobile apps, users install many apps in their smartphones and often use several apps
together to meet a specific requirement. Because of the evolution of user habits and app functions, the set of apps using at the same
time, i.e., app usage context, may change over time, which represents the dynamic correlation of different apps and even the evolution
trend of the whole app ecosystem. Therefore, understanding how an app’s usage context changes over time is very meaningful. In this
paper, based on a seven-year app usage dataset, we explore the long-term app usage context dynamics and understand the
underlying reasons and influence factors behind. Specifically, we build app co-occurrence graphs in different periods and learn app
embeddings accordingly by leveraging graph embedding algorithm. We then measure the change of app usage context by the distance
between neighboring app embeddings. As for the whole app ecosystem, we find that the change rate of app usage context undergoes
up and down phrases, and varies in different app-categories. Furthermore, we explore three influence factors correlated with such
dynamics. These results will be helpful for stakeholders to better understand the evolution of mobile users’ app usage behavior.
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1 INTRODUCTION

W ITH the rapid development of communication tech-
nology and smartphones, the number of mobile apps

in the app markets has increased a lot in recent years. Taking
App Store for example, there were around 900,000 mobile
apps in 2013, but the number turned to be 2,000,000 in
2016 [1]. Due to the diversity and fine-grained function of
mobile apps, nowadays mobile users install a lot of apps in
their phones and often use several apps together to meet a
specific requirement. For example, people often use Taobao
(a popular e-commerce app) and Alipay (a large online pay-
ment app) together when shopping online [2], [3], and users
who use Ele.me (an app to order food) usually use Keep
(an app focusing on exercise) at a same period [4]. Recent
estimates suggest that people use more than 30 apps per
month and 10 apps per day on average [5], [6]. What’s more,
because of the evolution of app markets, app functions and
user habits [7], [8], mobile users may change the used apps
from time to time, and the set of apps using at the same time
may also change over time. For example, as mobile phone
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photography becomes convenient and high-quality, people
like to use photography apps to take photos and then share
them through social apps, so these two types apps are often
used together. Recently, since Instagram is getting more
popular among young people than Facebook in fast photo
sharing [9], Instagram has been replacing Facebook to be
used with other photography apps to complete photo taking
and sharing. Therefore, for a specific app, its usage context
(i.e., other apps used together) is probably not stable in the
long term, which indeed represents the dynamic correlation
of different apps and even the evolution trend of the whole
app ecosystem. Thus, understanding how app usage context
changes over time is very meaningful.

However, limited studies pay attention to this important
topic of long-term app usage dynamics [10], [11]. On the
one hand, most of existing works only concern the static
usage context and they are often conducted based on short-
term datasets, whose periods are usually shorter than one
year or even only a few days [2], [12], [13], [14], [15]. They
aim to find out what apps are frequently used together and
the mutual impact of these apps. For instance, with a week-
long app usage dataset, Huang et al. discovered frequent
app usage sets (e.g., Taobao and Alipay) and reported the
association within apps belonged to the same category (e.g.,
News apps promote the use of each other), regardless of
time difference [2]. On the other hand, some others con-
ducted studies on understanding short-term dynamics, so
they focus on observing the changes of app usage context
in one day. For example, based on a four-day dataset, Liu
et al. divided one day into seven phases (e.g., morning,
noon) and selected an app at a time to watch changes in the
apps used together in different time phases [4]. However,
such works study the approximately hourly changes of app
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usage context, so they cannot provide insights about the
long-term evolution of app usage behavior and the app
ecosystem. Therefore, how the engagement of mobile users
and multiple apps changes over time and how an app’s
usage context change over time remain unexplored up till
now.

In this paper, based on a long-term app usage dataset
from 2012 to 2018, covering seven-year time spans and
containing more than 14 million usage records, we inves-
tigate long-term dynamics of app usage context and explore
general law behind, aiming to provide a better understand-
ing of app usage long-term behavior and the evolution of
the whole app ecosystem [10], [11]. Although this task is
meaningful, it also faces many challenges. First, the app’s
usage context is quite complex and changeable. On the one
hand, due to higher and higher requirement from mobile
app users, apps with various functions continue to appear,
so the app’s usage context is changeable over a long period
of time. On the other hand, even for a short period of time,
there are also various other apps co-used with a certain app
for a specific requirement, which causes a quite complex
usage context. Thus, for an app, how to effectively and com-
pletely extract its usage context information from massive
app usage behavior becomes a critical problem. Second, it
is difficult to measure the dynamics of app usage context
in different periods. To investigate long-term dynamics of
app usage context, it is inevitable to compare the complex
usage context information of different periods to obtain evo-
lution results. Therefore, it requires a unified representation
format for app usage context in different periods and a
quantitative measurement of the usage context dynamics.
However, since our research problem is quite different from
that of existing works, the above challenges are never con-
sidered before, e.g., the integration of dynamic temporal
information and the measurement of the app usage context
dynamics. To the best of our knowledge, it is the first time
to study the long-time dynamics of app usage context.

In order to overcome the above challenges, in this paper
we design app embeddings to investigate the long-term
dynamics of app usage context. For the first challenge, in
order to effectively capture the usage context dynamics over
time, we divide the whole long period into several short
periods. For each period, by constructing an app graph
with co-used relationship (we call it app co-occurrence
graph), all the complex app usage context information can
be represented effectively and completely, clearly showing
the usage context for all apps. As for the second challenge, to
measure the dynamics of app usage context across different
periods, we design a graph representation learning based
framework to transfer app usage contexts into quantifi-
able graph embeddings. Compared to traditional methods
(e.g., co-occurrence matrix), graph representation learning is
more efficient and effective. On the one hand, its embedding
vectors are much low-dimensional and much denser, which
is very helpful to enhance the calculation efficiency and re-
duce the computing resource cost. Moreover, during graph
representation leaning, the necessary information about the
nodes and relations will be distilled into node embeddings,
so that these embeddings can capture more high-order
information hidden in the local context (e.g., relationship
with multi-hop neighbors). Thus, we first quantify an app’s

usage context by graph representation learning framework
and further obtain the quantified dynamics.

However, it is not easy to design a suitable graph
representation learning based framework for our dynamic
graphs. Currently, dynamic graph representation learning
has emerged as a leading way to distill both structural
information and temporal information in dynamic graphs
[16], [17]. According to the way of integrating time in-
formation into graph embeddings, the existing dynamic
graph representation methods can be generally divided into
three categories, i.e., Sequence-Model based methods [17],
[18], Decomposition based methods [19], and Random Walk
based methods [16], [20]. In terms of applications, Sequence-
Model based methods and Decomposition based methods
are often designed for dynamic graphs with fixed nodes,
in other words, nodes are not added or removed, such
as social networks. Additionally, they are usually applied
to solve supervised or semi-supervised issues (e.g., link
prediction and node classification) [16]. However, Random
Walk based methods are not limited by these applications.
They are more adaptable to handle various types of node
observations, like node addition and node deletion, and
they perform better on unsupervised tasks (e.g., clustering)
due to the inherent advantage of random walks.

In our research, our app graphs are quite changeable due
to the fierce competition in app markets. For example, the
rate of overlapped nodes between two consecutive years
are only about 60%. What’s more, our task is unsupervised.
Consequently, Random Walk based methods are more suit-
able for our problem. Following the framework of Random
Walk based methods, we design a dynamic graph embed-
ding algorithm for our task. To be specific, we first generate
random walks on each snapshot and then input them into
an encoder to learn app embeddings (we call it app usage
context embedding to represent its usage context). Second,
to incorporate the effect of temporal dynamics, we use a
time regularizer as a smoothness constraint to adjust the app
embeddings over consecutive snapshots. Through a series
of evaluation in Section 4, we demonstrate that the app
embeddings have strong ability to represent the app’s usage
context. Thus, the quantified measurement of usage context
dynamics can be conducted between app embeddings in
different time periods. Then we explore general laws of
app usage context dynamics by investigating the underlying
reasons and influence factors behind, and obtain a series of
interesting findings.

To sum up, the main contributions of this work can be
summarized as follows:

• We make the first effort to study the dynamics of
app usage context with a long-term vision, to better
understand how an app’s usage context changes over
time and even the evolution trend of the whole app
ecosystem.

• We design a graph representation learning based
framework to transfer app usage context into
dynamic graph embeddings based on app co-
occurrence graphs, which distills the relationships
between apps and models the dynamics of app usage
contexts.

• Based on a 7-year app usage dataset, we explore the
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long-term app usage contexts dynamics over time
and different app-categories, and then conduct an
in-depth research on the underlying reasons and
influence factors behind.

Among the many insightful results and observations, the
following are the most prominent.

• The evolution of app’s usage context from 2012 to
2018 undergoes two phases: app’s usage context
changes more and more drastically from 2012 to
2014, but changes more and more smoothly after
2015. In terms of app categories, Book and Produc-
tivity apps change the fastest, while Communication
and Social apps have the smallest change rate.

• We find that three factors (i.e., app usage frequency,
app contextual diversity, app usage popularity) are
related to the usage context changes. More specific, if
an app has a high usage frequency, its usage context
will change slowly on average. When an app’s usage
context is quite diverse, its usage context will be
robust and also change very slowly. What’s more,
apps with stable popularity will also have stable
usage context.

The rest of the paper is organized as follows. First we
introduce the related work in Section 2. Then we introduce
our long-term app usage dataset and how we construct
app graphs and learn embeddings in Section 3. We provide
the visualization analysis of app usage context embeddings
in Section 4. In Section 5 we demonstrate how the app
usage context changes over time, and we further explore
three potential intrinsic influence factors correlated with
such dynamics in Section 6. Finally Section 7 concludes the
paper.

2 RELATED WORK

2.1 App Usage Analysis

Recently, with the increasing popularization of mobile de-
vices and apps, enormous app usage records have been left
on the Internet and such data contains rich information.
This has attracted a variety of researchers to be devoted
to from various directions, such as app prediction [21], [22],
app recommendation [23], [24], app usage pattern discovery
[25], [26], app privacy protection [27], [28], app ranking
fraud [29], [30]. In fact, many app usage analyses have taken
context information (e.g., time, location) into consideration,
which makes the analyses more approximate to practical
scenarios. The contextual factors can be divided into three
broad types, including sensor context, social context and
usage context [12]. Sensor context is context information
that is sensed through the device sensors, such as time [31],
[32] and location [33], [34], while social context refers to the
social relationship among users [35]. Within our scope, we
mainly focus on app usage context, which often represents
the apps used together at the same time period.

In order to know more about how users use apps on
their mobile devices, lots of studies have payed attention to
app usage context to find out what apps are frequently used
together and the mutual impact of these apps [2], [4], [12],
[13], [14]. Some researchers only concern the static app usage

context, which means they consider the app usage dataset
(often spanning a few days to one year) as a snapshot of
users’ app usage behavior and then detect app sets that
are frequently used together, regardless of time difference.
For example, with a week-long app usage dataset, Huang
et al. discovered frequent app usage sets (e.g., Taobao and
Alipay) and reported the association within apps belonged
to the same category (e.g., News apps promote the use
of each other) [2]. Based on half-year app usage records,
Tseng et al. firstly found out apps used together and further
demonstrated the sequential impact between these apps
[13]. However, with the removal of time information, these
works are limited to understanding users’ time-varying app
usage behavior [36].

Some others find that users tend to use different apps
at different times of one day, so they focus on observing
the changes of app usage context at different time periods.
Based on a four-day dataset, Liu et al. divided one day
into seven phases (e.g., morning, noon) and selected an app
at a time to watch changes in the apps used together in
different time phases [4]. However, such works study the
approximately hourly changes of app usage context, so they
cannot provide insights about the long-term evolution of
app usage behavior and the app ecosystem. Different from
these existing works, we focus on exploring the dynamics
of app usage context with a long-term vision, to better
understand how an app’s usage context changes over time
and even the evolution trend of the whole app ecosystem.

2.2 Long-term Behavior Analysis

A number of studies have focused on long-term human
behavior analysis [37], [38], [39], [40], [41], [42], [43]. The
aims of most of these works are to observe the changes in
people’s behavior, and further summarize the latent laws
[37], [38], [39] or analyze the reasons behind these changes
[40], [41], [42]. The types of these human behavior can
be divided into language usage behavior [44], [45], health
activity behavior [37], [42], [46], social behavior [40], [43],
[47], [48], mobile behavior [49], [50], online behavior [51],
[52], [53], [54], [55], etc.

Related to our targeted problem, we mainly focus on
previous works dedicated to long-term analysis on app
usage behavior [11], [53], [54], [56], [57]. Some researchers
just concentrate on the usage behavior of a single app and
analyse users’ daily habits and preferences [53], [54], [56].
For instance, Lin et al. conducted a 31-month observation
of user re-engagement patterns within a health tracking app
and demonsrated that the multiple lives paradigm is helpful
to users’ engagement [56]. Shameli et al. studied walking
challenges in a mobile activity tracking app over a period of
one year and observed that the competitions during walking
can significantly increase the users’ participation in physical
activities [53]. While some others focus on user interaction
with multi apps and provide overall view of the evolution
of the app ecosystem [11], [57]. For example, Wang et al.
conducted a comprehensive study on the evolution of app
ecosystems from different aspects with a dataset scaling
more than three years [57]. Li et al. analysed the evolu-
tion of mobile app usage from both macro-level (i.e. app
category) and micro-level (i.e., individual app) and detailed
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how users’ usage changes over time [11]. However, these
researches have not mined any correlation between apps
which is important to understand the app usage behavior
of mobile users. Therefore, different from existing works,
we look at the co-occurrence relationship between apps
and further explore how such relationship changes over
time, which indeed represents the dynamic correlations of
different apps.

2.3 Graph Representation Learning Application
Graph is often used to construct a network to represent
intricate relationships and recently many studies have fo-
cused on graph representation learning [58], [59], [60], [61],
[62]. As a result, a lot of researchers have applied it to
many areas [63], [64], [65], [66], [67], [68]. For example, in
the field of human mobility, to capture human mobility
motivation, Shi et.al. jointly mapped the user, time, loca-
tion and semantic information into the same vector space,
based on a heterogeneous graph constructed by the co-
occurrence relationship among these four types of entities
[68]. In terms of social relationship, Tian et al. constructed a
heterogeneous graph based on social relationships between
Twitter users and location context information, and learned
vector representations to improve the accuracy of location
inference [67]. However, to the best of our knowledge, only
a few works have applied graph representation learning
to app usage behavior [65], [66]. For example, Chen et al.
learned embeddings from three subgraphs containing the
relationships between app-location, app-time and app-app
respectively, realizing context-aware app usage prediction
[65]. In this paper, we construct app co-occurrence graphs to
more comprehensively preserve the correlations of different
apps in usage context, and then we learn app embeddings
to represent apps’ usage context information. Our work is a
new exploration of the application of graph representation
learning in app usage behavior.

2.4 Dynamic Graph Embedding Methods
For dynamic graphs, there are also many researchers de-
voting to proposing novel approaches to learn their graph
embeddings with temporal information [16], [17], [18], [19],
[20], [69], [70], [71], [72]. According to the way of integrating
time information into graph embeddings, these methods can
be generally divided into three categories, i.e., Sequence-
Model based methods, Decomposition based methods and
Random Walk based methods. Specifically, the Sequence-
Model based methods often utilize RNNs to capture the
temporal dynamics and then combine these RNNs with
embedding encoders to produce graph embeddings with
time information. For instance, Manessi et al. jointly learn
structural relationships among the nodes and temporal in-
formation between graphs based on Graph Convolutional
layers connected with LSTMs [18]. For Decomposition based
methods, by decomposing a tensor that aggregates all struc-
tural relationships and temporal observations, they are able
to generate graph embeddings with temporal patterns. For
example, Dunlavy et al. successfully predict the adjacency
matrix of the next timestamp via node embeddings ob-
tained by decomposing a 3-order tensor which is formed
by stacking those historical consecutive matrices [19]. In

Random Walk based methods, in order to leverage temporal
aspect of dynamic graphs, time is utilized as a regularizer to
constrain the node embeddings over consecutive snapshots.
A striking example is that Bian et al. adopt metapath2vec
to generate random walks on each static knowledge graph
and then they use a time regularizer to adjust embeddings
for those affected nodes [20].

Comparing these three types of methods, we find that
a critical limitation of the Sequence-Model based methods
and the Decomposition based methods is that their dynamic
graphs are often assumed to have fixed nodes, in other
words, nodes are not added or removed. This may be
because in their models, the time information is considered
as part of the input of encoders to produce dynamic graph
embeddings. Thus, they require rich historical observations
for each node. Additionally, they are often designed to solve
supervised issues (e.g., link prediction and node classifi-
cation) and do not have good performance in unsuper-
vised tasks (e.g., clustering). However, Random Walk based
methods do not have these limitations. On the one hand,
in their models, time information is not directly involved
in encoders, but just serves as a regularizer to impose a
smoothness constraint, so these models do not desire for
strong time dependency. Thus, they are more adaptable to
handle various types of observations, such as node addition,
node deletion, edge addition, edge deletion, etc. On the
other hand, they are an ideal option for unsupervised tasks,
since one of the major advantages of random walk is that
they do not need to be combined with a decoder when
learning embeddings [16]. Look at our research, our app
graphs are quite changeable and our task is unsupervised.
Therefore, we follow the idea of Random Walk based meth-
ods to solve our problem.

3 APP EMBEDDING LEARNING FRAMEWORK

In this section, we introduce how we learn app usage
context embeddings based on a long-term app usage dataset
in detail. We first construct an app co-occurrence graph for
each short period and then we learn app usage context em-
beddings across different periods by leveraging the graph
representation learning algorithm.

3.1 App Usage Dataset
To execute a longitudinal study of app usage, we have
developed an Android-based mobile app to collect users’
app usage behavior automatically. Considering users’ pri-
vacy protection, all data collection items will be showed
to users before the app is installed. The app will record
users’ app usage data every time 1% reduction in battery
power. Each record contains an anonymous user ID, times-
tamp, battery level, and a complete list of apps currently
interacting with the user. Up to now, the data collected
by the app has covered over 100,000 apps and more than
30,000 mobile users from over 100 countries. Besides, the
data has been partly released1. In the collected data, the
recording durations of different users are quite different
(ranging from several months to years) because users install
and uninstall this app at different time. Since we aim to

1. https://www.cs.helsinki.fi/group/carat/data-sharing/
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TABLE 1
Summary of our dataset.

#Records 14,800,960
#Apps 13038
#App Categories 49
#Time Span 7 years(2012-2018)
#System Android

explore the long-term dynamics of app usage, user records
with more than three-year duration are selected. Finally, we
obtain a long-term app usage dataset with over 14 million
records from 1,608 Android users during 7 years (from 2012
to 2018), and it covers more than 13,000 apps. To better
understand the characteristics of these apps, we also crawl
the category information for them from Google Play. We
find that these apps cover up to 49 categories, such as
Productivity, Communication, Entertainment, Business and
so on. The summary of our dataset is shown in Table 1.

Based on this dataset, we first conduct basic statistical
analysis to show data quality for our research. First, we
calculate the number of apps used by per user and show
its Cumulative Distribution Function (CDF) in Fig. 1 (a).
The result shows that 60% users have used more than 70
apps and top 40% have used more than 95 apps, illustrating
the good coverage of apps that users interact with in their
daily life. Second, to show the probability of app co-used,
we calculate the number of apps contained in per record and
plots its CDF in Fig. 1 (b). We can observe that 42% records
contain more than 3 apps. This demonstrates that users often
use a series of apps at the same time, so there exists a
high probability of app co-used. Thus, it is necessary and
valuable to pay attention to the app usage context, which
may help us better understand the users’ online habits.
Therefore, although a new record will only be generated
when the power drops by 1%, our app can still get a high-
quality dataset which is large-scale, has a good app coverage
and shows a high probability of app co-used.

Ethics. We want to point out that the privacy of users has
been well protected during data collection and processing.
First, before installing this app, all the data collection items
are displayed to the user, and only after the user agrees to
these items, our app can be installed on the user’s device.
Therefore, the involved users completely know and assent
to our data collection. Second, at the time of installation, the
user will be assigned a randomly generated identifier, and
any sensitive personal information will not be involved dur-
ing collection. Hence, the user’s true identity and privacy
have been well protected. Third, all of the researchers have
signed a strict non-disclosure agreement before processing
this dataset. Besides, throughout our processing procedure,
this dataset is located on our private server protected by
authentication mechanisms and firewells. Thus, whether in
data collection or data processing, we are very careful to
and have taken a series of measures to protect the privacy
of users.

3.2 Constructing App Co-occurrence Graphs
Our long-term large-scale dataset contains abundant usage
context information. However, such usage context informa-
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Fig. 1. Basic statistics of our dataset. (a): CDF of the number of apps
used by per user. (b): CDF of the number of apps contained in per
record.

tion is quite complex and changeable over time, due to
the complex and changeable app usage behavior of mobile
users. Thus, how to effectively and completely extract the
usage context information is very important. In this pa-
per, we propose to utilize graph, a flexible and extensible
structure, to help store such information. Specifically, we
firstly divide the whole long period of the dataset into
several short periods. Then, for each short period, an app
graph with co-used relationship will be constructed, i.e.,
app co-occurrence graph, containing all of the usage context
information in the period. In detail, the graph takes apps
as its nodes, and there will be an edge between two apps
if they have ever co-used, in other words, if they have ever
appeared in the same record in our dataset. Besides, in our
study, the frequency of co-used between two apps plays
a critical role, since it reflects the co-used probability and
further affects the closeness of apps. Thus, we use it as the
edge weight in the app graph. So for any app in a graph,
its usage context can be completely stored and clearly dis-
played. Therefore, the abundant but complex usage context
information can be extracted from the massive app usage
behaviors effectively.

After the above processing, we have obtained a series of
app graphs of different periods. However, how to measure
the dynamics of app usage contexts across different graphs
is still a thorny problem. Next we will introduce our solution
to this problem.

3.3 Learning App Usage Context Embeddings
To measure the dynamics of app usage context across
different periods, we propose to first quantify an app’s
usage context by graph representation learning, and then
obtain the quantified dynamic distance. In other words,
through graph representation learning, any app’s usage con-
text information is expected to be represented by a vector,
i.e., app usage context embedding, which can participate
in mathematical calculations. In addition, if two apps are
often co-used, and their respective co-used apps are similar,
their usage context information will be more similar. Then
they will be closer to each other in the app graph. Thus,
accordingly, in the embedding space, we need to assure that
the embeddings of these two apps will also closer to each
other. In other words, their embeddings will be more similar,
or the distance of their embeddings will be smaller.

Among the leading methods of dynamic graph repre-
sentation learning, we follow the framework of Random
Walk based methods [16], due to its better performance
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on unsupervised tasks and its higher adaptability on node
dynamics. Based on this framework, we design a dynamic
graph embedding algorithm for our task. To be specific,
we first generate random walks on each snapshot and
then input them into an encoder to learn app embeddings
(we call it app usage context embedding to represent its
usage context). Second, to incorporate the effect of tempo-
ral dynamics, we use a time regularizer as a smoothness
constraint to adjust the app embeddings over consecutive
snapshots. To this end, we learn app embeddings through
node2vec algorithm [58], which first samples random-walks
from the graph as sentences and then learns node em-
beddings by skip-gram model. The reasons of employing
node2vec instead of other random walk based algorithms,
like walk2vec [73], are mainly as follows. First, node2vec
is good at dealing with weighted graphs. In our study, the
app graphs are all weighted and their edge weights play
a critical role in our study as they reflect the closeness of
co-used apps, so node2vec is a good model to integrate
such information. Second, it performs better on capturing
the homophily similarity of a graph than other algorithms.
That is, if two nodes are highly interconnected and be-
long to similar graph clusters or communities, they will be
embedded closely together [58], so it is helpful to capture
topological information hidden in the local contexts in our
app co-occurrence graphs. In fact, in a graph, there are
two kinds of node similarity, i.e., homophily and structural
equivalence. And in this algorithm, return parameter p and
in-out parameter q jointly control the similarity choice. In
our study, by setting the appropriate values of p and q,
we capture the homophily similarity of the app graph and
obtain embeddings for all apps. So for any app graph, if two
apps are closer in the app graph, their embeddings will be
also closer in the corresponding embedding space.

However, app embeddings of different periods cannot be
compared, because they distribute in different embedding
space. To solve this problem, we need to align the different
embedding spaces of different periods to the same coordi-
nate axes. In our study, we use orthogonal Procrustes [74] to
achieve this goal. The specific procetures are as follows.

We denote d as the dimension of embedding vectors, S
as the intersection apps of period (t) and period (t + 1),
n(t) as the number of apps of period (t) and n(t+1) as
the number of apps of period (t + 1). A(t) is the embed-
ding matrix of period (t), and A(t) ∈ Rd×n(t)

. Similarly,
A(t+1) is the embedding matrix of period (t + 1), and
A(t+1) ∈ Rd×n(t+1)

. A(t)
S is the submatrix of A(t) and it

only contains the embeddings of S, and A
(t)
s ∈ Rd×|S|. So

as A
(t+1)
S , the submatrix of the embedding matrix A(t+1).

Then the optimizing function R(t) is as follows:

R(t) = arg min
QTQ=I

∥∥∥QA(t)
s −A(t+1)

s

∥∥∥
F
, (1)

where A
(t)
s ∈ Rd×|S|, A(t+1)

s ∈ Rd×|S|. Besides, Q ∈ Rd×d,
which is the rotational matrix to adjust the coordinate axes
between two consecutive periods. For pair-wise continuous
periods, we adjust their coordinate axes successively.

Finally, for all periods, their aligned embedding matrices
are all obtained, with which we are able to compare em-
beddings from different periods and quantify their distance.

Therefore, it becomes possible to investigate how the app
usage context changes over time and further explore general
laws.

In a short summary, we effectively extract apps’ co-
used relationship and their usage context information from
the original app usage behavior data, by constructing the
app co-occurrence graph for each period. Then node2vec is
performed on each app graph to transform each app node
into an embedding vector, which can represent its usage
context information. After aligning these embeddings into
the same coordinate axes, we can measure the app usage
context dynamics across different periods. Thus, we are
able to study the long-term dynamics of app usage context
and further explore general laws, via app usage context
embeddings.

4 VISUALIZATION ANALYSIS OF APP USAGE CON-
TEXT EMBEDDINGS

According to the procetures in Section 3, an app’s usage con-
text will be represented by an embedding. Based on these
embeddings, we can investigate the long-term dynamics of
app usage context. However, before this investigation, it
is necessary to evaluate the representation ability of these
embeddings. In addition, according to the algorithm in
Section 3, the closer embeddings will have more similar
usage context, in other words, will have larger probability to
co-occur. So our evaluation task is to verify whether closer
embeddings will be more likely to co-occur.

To this end, we first look at the app graph, which is
constructed on the basis of real-world app usage data and
has extracted the co-occurrence relationship from the data.
In the app graph, if two apps co-occur more often, they
will be more closer. Naturally, we consider to verify whether
closer embeddings will be also closer in the app graph. In
addition, users often use a series of apps to satisfy their
habits in the daily life. For example, in the leisure time
at home, they often use Entertainment apps, Video apps
and Music apps. When they are travelling, they often use
Travel apps and Finance apps. So we can also verify whether
closer embeddings will co-occur to satisfy users’ habits.
Besides, users may use several apps together to complete
a complex task. For instance, to post a wonderful news on
Instagram (a popular Social app), users may use Instagram,
Photography apps and Video apps at the same time. So these
function-relevant apps are likely to be used together. Thus,
we can also verify whether closer embeddings will co-occur
to realize an app’s peculiar function.

In a short summary, to evaluate the representation ability
of the app embeddings, we cosider to conduct this ver-
ification from the following three aspects: 1) app usage
context embeddings restore graph structure information: to
verify whether closer embeddings will be also closer in the
app graph; 2) app usage context embeddings reflect user’s
habits: to verify whether closer embeddings will co-occur to
satisfy users’ habits; 3) app usage context embeddings show
app’s peculiar functions: to verify whether closer embed-
dings will co-occur to realize an app’s peculiar function.

Before showing the evaluation experiments, we will in-
troduce the fundamental experiment settings in our study.
First, we divide the 7-year dataset into 7 yearly groups. And
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TABLE 2
Statistics of the graph in every year.

Year 2012 2013 2014 2015 2016 2017 2018
#Nodes 655 1834 4152 5302 4015 3017 1892
#Edges 1718 27765 25343 38551 28666 61527 40056
#Average
Degree 5.24 30.27 12.20 14.54 14.28 40.78 42.34

#Overlapped
Nodes —- 18.9% 27.4% 43.4% 64.4% 61.2% 65.1%

we mainly have two reasons to choose the time period as
one year. On the one hand, our work aims to macroscop-
ically investigate the dynamics of app usage context and
explore general laws, so it seems not necessary to choose a
very short period. On the other hand, a shorter period may
cause sparser graphs, so it will be difficult to learn good
embedding representations. Thus, we use the year as the
time period. The detailed statistics of the graph in every year
is shown in Table 2. Note that ”#Overlapped Nodes” means
the proportion of the overlapped nodes between every two
consecutive years in all nodes in the latter year of these
two years. For example, ”18.9%” means that the number
of overlapped nodes between 2012 and 2013 accounted for
18.9% of the total number of nodes in 2013. We can see that
the number of nodes in a graph gradually increased before
2015, while decreasing after 2015. This may be because
after 2015, users are inclined to frequently use a set of
apps according to their personal habits, making the apps
with poor user experience eliminated in the fierce market
competition, while making the apps with good user service
survived. What’s more, for the proportion of overlapped
nodes between two consecutive years, we can observe that
the value of this metric is always below 50% before 2015,
and its maximum is only 65.1%, implying that these app
graphs are quite changeable, with active node deletion and
addition. For other parameters, the return parameter p and
the in-out parameter q are experimentally set to be 1 and
0.25 respectively when learning embeddings by node2vec,
to capture the homophily similarity best. Besides, the size
of the embedding vector is set to 128. Based on these
experimental settings, we conduct the following evaluation
experiments.

4.1 App Usage Context Embeddings Restore Graph
Structure Information
Firstly, we want to verify whether closer embeddings will be
also closer in the app graph. To this end, we need to extract
apps whose embeddings are close in the embedding space,
and then observe their positions in the app graph. Thus, on
one hand, to obtain closer app embeddings, we cluster them
by K-Means. On the other hand, in the app graph, we mark
the apps in the same cluster with the same color. Taking the
2017’s app embeddings for example, they are clustered into
around 60 clusters, where 60 is the best number of clusters
according to Calinski-Harabasz Index [75]. Then we mark
the apps in the different clusters with different colors. Note
that in order to show more clearly, we just color the top 10
largest clusters, and the results are shown in Fig. 2. Fig. 2 (a)
is the clustering result of its embeddings which are mapped
into 2-dimensional space by t-SNE [76], with the closeness
in high-dimensional space preserved. Fig. 2 (b) reflects the

(a) Clustering Result of App Em-
beddings

(b) App Positions in the Initial
Graph

Fig. 2. Comparison of the node closeness in the embedding space and
the graph. (a) represents the clustering result of app embeddings of
year 2017 and the top 10 largest clusters are colored. (b) reflects the
corresponding positions of the apps in (a) in the initial app graph.

positions of the apps in the same cluster in the app graph.
Note that these positions are generated by Fruchterman-
Reingold Algorithm [77], one of the well-known algorithms
for the graph layout [78]. We can observe that the apps in
the same cluster are also neighbours in the corresponding
app graph, in other words, the closer embeddings will be
also closer in the app graph. This demonstrates that the app
usage context embeddings restore the structure information
in the graph, so the embeddings learn the usage context
information well.

4.2 App Usage Context Embeddings Reflect User’s
Habits

Secondly, we further verify whether closer embeddings will
co-occur to satisfy users’ habits. To achieve this goal, first
of all, we also need to cluster all the app embeddings to
obtain those closer embeddings. Then for each cluster, we
observe if the apps in it can satisfy users’ typical habit,
such as entertainment and travelling, with the help of the
apps’ category information. Without loss of generality, we
take app embeddings of another year 2018 for example.
We cluster them into 60 clusters by K-Means according to
Calinski-Harabasz Index [75]. The result is shown in Fig. 3
(a). We can observe that there are two kinds of clusters:
the central largest cluster and the peripheral small clusters.
First, for the central largest cluster, we find that many of its
apps are very popular, and even top 10 popular apps in 2018
are all in it, such as Facebook, Twitter, Chrome, Gmail and
so on. This indicates that popular apps often be co-used by
users. This is reasonable for their high applicability anytime
and anywhere. Second, for the peripheral small clusters,
we find that the apps are more likely to co-occur to satisfy
users’ typical habits. For example, in one of these clusters,
we label the apps in it with app-category information, and
then we observe that the most app-categories (also called
main app-categories) are Travel, Transportation and Photog-
raphy, which are very common to co-occur when users are
travelling. We label this cluster as ”Travel” and regard the
label as its habit label. The sketch map of it is shown in Fig. 3
(b), where the blue solid dots represent apps and they are
labeled with their app-categories, e.g., Travel, Transportation
and Photography. Finally, according to the main categories
in each small cluster, we summary five kinds of typical
habits, and they are entertainment, travel, sports, game and
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Fig. 3. App usage context embeddings reflect user’s habits. The left
picture shows the clustering result of app embeddings of year 2018. The
right picture is the sketch map of a cluster whose habit label is ”Travel”,
where the blue solid dots represent apps and they are labeled with their
app-categories, e.g., Travel, Transportation and Photography.

TABLE 3
Five kinds of user habits and their main representative app-categories.

Habit Label Main App-Categories Number of
Clusters

Entertainment entertainment, music, media 13
Travel travel, transportation, photography 16
Sports sports 4
Game game 3

Business business, news, education, books 4

business. The detailed information is shown in Table 3. Note
that some clusters are ignored because they contain very few
entities (e.g., less than 8). We can observe that every cluster
can be labeled with a typical habit. In other words, for every
cluster, we can successfully infer the habit it may satisfy,
according to the main app-categories it contains. Thus, it
is obvious that closer embeddings will co-occur to satisfy
users’ habits.

4.3 App Usage Context Embeddings Show App’s Pecu-
liar Functions
Thirdly, we plan to verify whether closer embeddings will
co-occur to realize an app’s peculiar function. To this end,
we need to focus on some specific apps and their peculiar
functions, instead of only considering their app-categories.
Then we seek for their neighbours in the embedding space
and further observe the neighbours functions, to verify if
they can cooperate to complete a task. Specifically, in the
experiment, first, we choose two groups of apps: Social apps
and Travel apps The apps in each group have their own
peculiar functions. The detailed information is shown in
Table 4. From the table, we can observe that although Insta-
gram and LinkedIn are both Social apps, their peculiar func-
tions are quite different. Instagram mainly provides picture
sharing services for young people, while LinkedIn mainly
provides social services for professionals. So as Airbnb and
Uber. Then, to obtain their neighbors in embedding space,
we quantify the distance between them as follows:

s(t) (ai, aj) = cosDist
(
a
(t)
i ,a

(t)
j

)
, (2)

where a
(t)
i and a

(t)
j are embeddings of apps ai and aj in

period (t), respectively. cosDist means Cosine Distance, and
s(t) (ai, aj) denotes the cosine distance of apps ai and aj in
the embedding space in period (t).

For each app, we obtain its top 20 closest neighbors in
each period, and the distribution of these neighbors’ app-
categories is shown in Fig. 4. In each sub-figure, the sum

TABLE 4
Peculiar functions of different apps.

Group1: Social apps
App Peculiar Function

Instagram photos, young people
LinkedIn career, proffessionals

Group2: Travel apps
App Peculiar Function

Airbnb house review
Uber transportation

(a) Instagram (b) LinkedIn

(c) Airbnb (d) Uber

Fig. 4. Comparison of the neighbours of four apps with different peculiar
functions. Co-occurrence for app’s peculiar functions. Each sub-figure
shows the distribution of app-categories of the target app’s top 20 closet
neighbors in each period. Specifically, in each sub-figure, the sum of the
values in each row is 20, and each value represents the number of apps
belonging to a certain app-category in a certain period.

of the values in each row is 20, and each value represents
the number of apps belonging to a certain category. For
example, in Fig. 4 (a), the number ”4” in the first row and the
first column represents that there are 4 Communication apps
in the top 20 closest neighbours of Instagram in 2012. In
these figures, we have marked the representative categories
of each app which are the categories that best distinguish
this app from other apps. For example, the representative
categories of Instagram are Travel and Photography, and
they appear almost twice as likely in Instagram neighbors
as LinedIn’s. The probability that Travel and Lifestyle will
appear in the neighbors of Airbnb is 23% higher than that of
Uber. We can observe that for each app, its representative
categories are consistent with its peculiar functions. For
example, for Uber, its representative categories (i.e., Finance,
News and Travel) are highly related to short-distance pay-
ment task. For LinkedIn, the categories Business, News and
Education can reflect the highly educated characteristics
of its users. Therefore, closer embeddings will co-occur to
realize an app’s peculiar function, in other words, the app’s
neighbors may co-occur with this app to complete a specific
task together, and we can infer an app’s function from its
closest embedding neighbours.
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To sum up, the above three experiments verify that apps
that are closer in the embedding space will be also closer
in the app graph. Besides, they will also co-occur to satisfy
users’ habits or to realize an app’s peculiar function. This
indicates that the apps’ usage contexts are well learned by
their embeddings. Based on these embeddings with strong
representation ability, next we will investigate how the app
usage context changes over time and further try to explore
general laws.

5 LONG-TERM DYNAMICS OF APP USAGE CON-
TEXT

In this work, we aim to macroscopically investigate long-
term dynamics of app usage context. With the rapid devel-
opment of communication technology and the high pop-
ularity of mobile phones, app markets have boomed and
changed a lot during recent years [1]. This inspires us to
ask how the app’s usage context evolves over time. In
addition, with the category information of all apps, we can
further explore the usage context dynamics of different app
categories. However, before these investigations, we need
to quantify the change of usage context of the same app
across different periods. Since the embeddings of all periods
have been aligned into the same coordinate axes, we use the
following method to measure the change of usage context
of the same app across different periods.

∆(t) (ai) = cosDist
(
a
(t)
i ,a

(t+1)
i

)
, (3)

where a
(t)
i and a

(t+1)
i are the embeddings of the app ai in

period (t) and period (t + 1), respectively. ∆(t) (ai) is the
change of usage context of the app ai from period (t) to
period (t+1). Next we will investigate how the apps’ usage
contexts change across different periods, and further explore
the usage context dynamics of different app categories.

5.1 Overall App Usage Context Dynamics

For every two consecutive periods, we compute the changes
of usage context of the apps existing in both periods, and
then display the results by Boxplot as shown in Fig. 5. In the
figure, green horizontal line represents the median of the
usage context changes of all apps, and red upper triangle
represents the average.

Generally speaking, the apps’ usage context macroscop-
ically undergoes up and down phrases. For the first phase
(Phase1), from 2012 to 2014, there is a trend that the dynamic
of app usage context is on the rise, which indicates that
in these years, apps are used in drastically unstable and
changeable contexts. While for the second phase (Phase2),
from 2014 to 2018, just the opposite of the first phase, such
distance has a downward trend, which suggests that the
apps’ usage context is getting stable during these years.
Around 2014, the dynamic of app usage context reaches its
maximum, and it is about 1.4 times that of 2012.

In order to better observe the evolution of app usage
context over time, we shorten the time span from one year
to half a year. Based on these 14 half-year app co-occurrence
graphs, we obtain the fine dynamics of app usage context,
as illustrated in Fig. 5 (b). In general, the evolution trend
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(b) Time Span = 1 Half of a Year

Fig. 5. Boxplots of the evolution of app usage context when time span is
set to be 1 year and half year, respectively. ”2012-3” on the Horizontal
axis in (a) means from year 2012 to year 2013, and so on. ”1” on the
Horizontal axis in (b) means from the 1st half of 2012 to the 2nd half
of 2012, and so on. In the figure, green horizontal line represents the
median of the usage context changes of all apps, and red upper triangle
represents the average.
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Fig. 6. Comparison of one-year app co-occurrence graphs and half-year
app co-occurrence graphs on the number of edges and the average
degree. “2012-1” on the Horizontal axis means the 1st half of 2012, while
“2012-2” means the 2nd half of 2012.

revealed in Fig. 5 (b) is consistent with that in Fig. 5 (a),
indicating that the time span has little effect on the macro-
scopic evolution of app usage context. However, a shorter
time span will cause sparser graphs, e.g., the edge size and
the average degree of a graph will decrease significantly, as
shown in Fig. 6. Consequently, compared to the one-year
app co-occurrence graph, the half-year app co-occurrence
graph will involve less app co-occurrence relationships and
incomplete app usage context. Therefore, we still choose one
year as our time span to develop other experiments.

As for the reasons behind the phenomenon in Fig. 5, one
of the possible reasons to cause the instability in the first
phase is the development of mobile networks. During 2012
to 2014, resulting from the breakthrough in communica-
tion technology, the fourth-generation (4G) mobile networks
gradually replaced the traditional 3G networks [79]. Thus,
the app market ushered in a new round of prosperity. Out
of curiosity and freshness, mobile users faced more various
app choices, and they might uninstall an app which had
not been downloaded for a long time. Therefore, generally,
the context of an app would change fast, which led to the
large usage contextual change distance during these years.
After 2015, with the fierce competition in the app market
and more stable usage habits of users, the usage context of
a specific app gradually became stable. Therefore, for these
years, their usage contextual change distance started to get
smaller.

During periods like Phase1, to avoid being replaced
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Fig. 7. The app usage context change of app-categories between two
consecutive years. Each value represents the rank of app usage context
change of an app-category in all app-categories in a certain period.
Rank ”1” means the largest change, while rank ”20” means the smallest
change. The value 0 means its corresponding app-category has less
than 10 apps, and will not participate in ranking for large contingency.

quickly in the fierce competition of the app market, app
developers should keep sensitive to new technologies and
develop apps with different functions. While during periods
like Phase2, apps’ usage contexts are getting stable, which
means the mobile users usually have stable co-used apps
[80], so the app developers can consider to design one-stop
apps to make mobile users enjoy more functions without
switching between apps.

5.2 App Usage Context Dynamics of Different App Cat-
egories

Apps of different categories have different functions and
their usage context is quite different, such as the apps in
Table 3. Next, we will explore the usage context dynamics
of different app categories.

Firstly, we quantify the usage context change of a spe-
cific app category between two consecutive periods by the
median of all its apps’ usage context changes. For example,
if there are totally 100 Social apps existing in both 2012 and
2013, the usage context change of the category Social from
2012 to 2013 is the median of changes of the 100 Social apps.
To track the long-term (7-year) dynamics, we filter out those
categories that don’t appear in all periods. Then we obtain
the ranking results for the app categories as shown in Fig. 7.
Each value represents the rank of app usage context change
of an app-category in all app-categories in a certain period.
Rank ”1” means the largest distance while rank ”20” means
the smallest distance. The value 0 in this table means its
corresponding category has less than 10 apps and will not
participate in ranking for large contingency.

From Fig. 7, we find that the change of usage context of
most app categories does not have a stable trend. However,
there are still some apps that almost always ranking in
top 10, like Books and Productivity, while some other apps
are almost always in the last 10, such as Communication
and Social. This means that the contexts of Books apps
and Productivity apps change more faster than other apps,
while Communication apps and Social apps have the slower
change rate of usage contexts.

For Productivity and Books apps, they usually need to
cost users longer time, so they are more easily interrupted
by other apps, which increases the randomness of their
neighbors. Therefore, their positions in the embedding space
are more unstable. While for Communication apps and

Social apps, it doesn’t need to take a long time to use them,
so the probability of being interrupted tends to be smaller.
In addition, they are usually initiatively used by people, so
their neighbours often have related functions with them.
Therefore, the characteristics of their neighbours are more
stable than Productivity apps and Books apps. Thus, their
usage contextual change distance is smaller. Apps that have
shorter usage time tend to have stable usage context, so
app developers can focus on fragmented reading function to
shorten their apps’ usage time to obtain stable usage context.

In a short summary, to study the dynamics of usage
context via app embeddings, we first quantify the change
of usage context between two consecutive periods. Then we
observe its evolution over time and find that this evolution
undergoes two phases: app’s usage context changes more
and more drastically from 2012 to 2014, while changing
more and more smoothly after 2015. In addition, in terms
of app categories, we find that the usage contexts of Books
apps and Productivity apps change more faster than other
apps, while Communication apps and Social apps have the
slower change rate of usage context. For these two findings,
we also provide possible reasons and implications.

6 INFLUENCE FACTORS OF APP USAGE CONTEXT
CHANGES

In this section, to further reveal the underlying substantial
factors behind the general laws, we pay attention to three
possible factors: app usgage frequency, app contextual di-
versity and app usage popularity. Our goal is to investigate
if they have an impact on the change of an app’s usage
context and if so, how do they affect it.

6.1 Influence of App Usage Frequency
An app’s usage frequency usually represents its usage ne-
cessity among users. How does the usage context change
for apps with high/low frequency? Motivated by this ques-
tion, we obtain both apps’ usage context change distances
(according to Equation 3) and their frequencies, which are
defined as the following Equation 4.

f (t) (ai) = n(t) (ai) /

|S(t)|∑
k=1

n(t) (ak) , (4)

where n(t) (ai) represents the number of times that the
app ai appeared in the records of the period (t), and
t ∈ {2012, 2013, 2014, 2015, 2016, 2017}. S(t) denotes the
intersection apps of period (t) and period (t + 1), and
i ∈

{
1, . . . ,

∣∣S(t)

∣∣}. To ensure the robustness of our result,
we ignore those apps whose frequency is less than 10−4.

To make our results more obvious, we log-transform
the frequencies and normalize the distance values to have
zero mean and unit variance. We denote the normalized
values with ∆̃(t) (ai). We draw the points determined by
the distance score and frequency score on the map, and
further obtain their scatter density map and 95% Confidence
Interval (CI), as shown in Fig. 8 (a). Thus, the relationship
can be represented by the following formula:

∆̃(t) (ai) ∝ βf log
(
f (t) (ai)

)
, (5)
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Fig. 8. The statistical law between app’s usage context change and
usage frequency (a), and its corresponding verification (b).

where βf < 0.
This result shows that the relationship of apps’ usage

context change distance and their frequency scale as a
negative power law. Thus if an app’s frequency is higher, its
usage context change distance will be smaller or its context
will change more slowly.

The negtive trend in Fig. 8 (a) may be because if an app’s
frequency is higher, the more initiatively users will use it, so
their neighbour apps are often functionally dependent on
them. Therefore, the characteristics of their neighbours will
be more stable. Consequently, their context change distance
will be smaller.

To further verify the validity of this finding, we take the
previous results in Section 5 for verification. Reflect on the
results we observed earlier in Section 5.2: the contexts of
Books and Productivity apps change faster than Communi-
cation and Social apps. According to the negative power law
obtained above, the frequencies of Books and Productivity
apps will be lower than those of Communication and Social
apps. Thus we further observe the frequencies of these
categories. In our experiment, for each of these categories,
we regard the mean of its frequency values in a year as
its frequency in this year. When selecting the period for
observation, according to Fig. 5, we have avoided the typical
years, such as 2012, 2014 and 2018, while choosing 2013
and 2016. The result is shown in Fig. 8 (b). Note that the
frequency values of the y-axis in this figure is the initial
frequency values f (t) (ai). Obviously, the frequencies of
Books and Productivity in both 2013 and 2016 are lower
than those of Communication’s and Social’s in 2013 and
2016. This result further supports that an app’s frequency
does have an impact on the change rate of its usage context
and their relationship scales as a negative law.

6.2 Influence of App Contextual Diversity
With the inspiration of the concept of ”polysemy” in linguis-
tics, we consider the contextual diversity of an app’s neigh-
bours as a possible factor to have an impact on the dynamics
of app usage context. ”Polysemy” means the number of
senses of a word, which is often used in word research [81],
[82]. Afterwards, Hamilton et al. [83] measured a word’s
contextual diversity as its polysemy in their task. In their
study, words that occur in many distinct, unrelated contexts
will tend to be highly polysemous. In our research, each
app has its usage context, so it also has contextual diversity.
Following the meaning of polysemy in their research, in our

study we use ”polysemy” as a proxy for an app’s contextual
diversity, in other words, function diversity of an app’s
neighbours. We measure an app’s polysemy by its local
clustering coefficient within the app graph [84]. The local
clustering coefficient d of app ai is calculated through the
following formulas:

d (ai) =

∑
ckcl∈NPPMI(ai)

I {PPMI (ck, cl) > 0}
|NPPMI (ai)| (|NPPMI (ai)| − 1)

,

NPPMI (ai) = {aj : PPMI (ai, aj) > 0} ,

PPMI (ck, cl) = max

{
log

(
p̂ (ck, cl)

p̂ (ck) p̂ (cl)

)
− α, 0

}
.

(6)

where α > 0, and it is a prior value, which provides a
smoothing bias and is set to be 0.75 in previous work [85].
PPMI means Positive Point-wise Mutual Information, and
the p̂ corresponds to the smoothed empirical probabilities of
app occurrences. This measure counts the proportion of ai’s
neighbors that are also neighbors of each other. According
to this measure, an app will have a high cluster coefficient
(and thus a low polysemy score) if the apps that it co-occurs
with also tend to co-occur with each other. Polysemous
apps that are contextually diverse will have low clustering
coefficients, since they appear in disjointed or unrelated
contexts.

To observe the relationship of an app’s polysemy and its
usage context change, we also obtain the quantified distance
scores according to Equation 3, and obtain the polysemy
scores by Equation 6. Like frequency, we also need to ignore
those apps whose local clustering coefficients are more than
0.1. Besides, we also normalize the distance values to have
zero mean and unit variance (i.e., ∆̃(t) (ai)). As for the local
clustering coefficients, we first log-transform them, and then
make them negative, in order to assure the larger scores
correspond to the higher polysemy (more polysemous or
more contextual diverse). The result is shown in Fig. 9
(a). In this figure, the greater the horizontal coordinate,
more polysemous it will be. and such relationship can be
represented by the following formula:

∆̃(t) (ai) ∝ βp
[
− log

(
d(t) (ai)

)]
, (7)

where βp < 0. Thus, the relationship of apps’ change of
usage context and their polysemy scores also scales as a
negative power law. Thus if the functions of the neighbours
of an app are more diverse, the change of the app’s usage
context will be smaller, which means that its usage con-
text will be more stable. This may be because if an app’s
neighbors are more diverse, it will be difficult for such
apps to be affected by sudden popularity or unpopularity
from its neighbors [8], which indicates that its usage context
will be more stable under the changeable app market. App
developers should improve app’s contextual diversity to
enjoy a stable usage context.

To verify the reliability of this finding, we look back at
Fig. 5, and count the polysemy scores of 2012, 2014 and 2017.
The results are shown in Fig. 9 (b). We can see that there is
a downward trend of polysemy scores from 2012 to 2014,
but an upward trend from 2014 to 2017. Additionally, so as
Fig. 8 (b), we also observe the polysemy scores of these app-
categories. The results are shown in Fig. 9 (c). We can see



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

1.0 1.5 2.0 2.5 3.0 3.5
Polysemy

3
2
1
0
1
2
3

C
os

in
e 

D
is

ta
nc

e

Log( )

(a) Power Law between App’s Usage Con-
text Change and Its Polysemy

2012 2014 2017
1.0
1.2
1.4
1.6
1.8
2.0

Po
ly

se
m

y

(b) App Polysemy of Different Years

prod book comm soci1.0

1.2

1.4

1.6

M
ea

n 
of

 P
ol

ys
em

y 2013
2016

(c) App Polysemy of Different App-categories

Fig. 9. The statistical law between app’s usage context change and polysemy (a), and its corresponding verification (b-c).

that the polysemy scores of Books and Productivity in both
2013 and 2016 are lower than those of Communication’s and
Social’s in 2013 and 2016. These results are also consistent
with the law in Fig. 9 (a): if an app is more polysemous (in
other words, the functions of the neighbours of the app are
more diverse), its usage context will be more stable.

6.3 Influence of App Usage Popularity
In app markets, most apps have a very short life cycle. There
is a common phenomenon that some new apps grab peo-
ple’s eyes quickly and become popular, but they may also
quickly disappear. However, some other apps have always
been popular. When an app’s popularity changes, will its
usage context also change? And what is the relationship
of them? To explore their answers, we need to first obtain
the popularity change score for each app. In our study,
for year (t), the popularity of app ai is regarded as its
popularity rank r(t) (ai) which is decided by its number of
being used, where rank 1st corresponds the largest number
of occurrence. Thus the popularity change of app ai between
period (t) and period (t+ 1) is:

c(t) (ai) = r(t+1) (ai)− r(t) (ai) . (8)

Thus if an app’s rank rises/falls, its popularity change score
will be positive/negative.

To make the results more robust, we also normalize the
distance values to have zero mean and unit variance. As for
popularity change scores, they are transformed as follows:

c̃(t) (ai) =

 log
(
c(t) (ai)

)
, c(t) (ai) ≥ 0

− log
(
−c(t) (ai)

)
, c(t) (ai) < 0

(9)

Thus whether this value is positive or negative, its app has
a ranking change if it is close to 0.

The result is shown in Fig. 10 (a), and their relationship
can be represented as follows:

∆̃(t) (ai) ∝ βc
∣∣∣c̃(t) (ai)

∣∣∣ , (10)

where βc > 0.
The relationship of apps’ usage context change scores

and their popularity change scores scales as a positive
power law. The result shows that, generally, if an app’s
popularity change more, its usage context change will be
larger. This indicates that the usage context of those short-
lived apps tend to change a lot during long period. Besides,
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Fig. 10. The statistical law between app’s usage context change and
popularity change (a), and its corresponding verification (b-c).

if an app is always popular, its usage context will be more
stable.

This may be because for those short-lived apps, there is
not a stable structural relationship between itself and other
apps, leading to their unstable usage context. As for those
popular apps, after fierce competition, they stand out from
the other apps with the same category, and form a stable
ecosystem with other apps of different categories. For app
developers, if they want to make their app’s life cycle long,
it is better to let it have a stable relationship with other apps.

We also further count the popularity scores for different
years and different app categories, and the results are shown
in Fig. 10 (b) and (c). Note that the popularity change values
of the y-axis in this figure is the initial absolute values of
ranking change

∣∣∣c̃(t) (ai)
∣∣∣. From Fig. 10 (b), we can find that

generally the popularity change in 2014 is larger than that of
2012 and 2017. This is corresponding to the result in Fig. 5:
the app usage context in 2014 changes more drastically than
that of 2012 and 2017. At the same time, in Fig. 10 (c),
the popularity change of Books and Productivity is also
larger than that of Social and Communication, which is
corresponding to the result in Fig. 7. These results support
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the statistic law in Fig. 10 (a) from two different aspects.
To sum up, in this section, we focus on three possible

factors related to an app’s usage context change, i.e., app
usage frequency, app contextual diversity and app usage
popularity. We find that if an app has a higher usage
frequency, its usage context will change slower and such
change scales as a power-law. The same law is for an app’s
contextual diversity. In addition, we also find that apps with
stable usage context will also have stable popularity. So if
an app is always popular, its usage context will be more
stable. In addition, to further verify the validity of these
findings, we take the previous observation in Section 5 for
verification and the results are generally consistent with
our findings. Therefore, these three factors deserve to be
considered to study the usage context change of apps. Ad-
ditionally, these findings can also bring valuable implication
for the stakeholders. For example, for the app developers, if
they want their apps to enjoy a longer life cycle, it is better to
provide them with stable co-occurrence relationships with
other apps. To provide such relationships, a possible way
is to improve their apps’ contextual diversities, in other
words, improve the functional diversities of their apps,
e.g., one-stop apps. Therefore, we believe that our findings
concerning on these three factors will inspire the related
researchers and stakeholders.

7 CONCLUSION AND FUTURE WORK

In this paper, we utilize a long-term app usage data with
seven years to understand the longitudinal app usage con-
text dynamics via graph embedding. By building app co-
occurrence graphs during different periods, we learn app
embeddings accordingly and measure how an app’s usage
context changes by using the distance of neighboring app
embeddings. Overall, our findings suggest that app usage
context changed more and more drastically from 2012 to
2014, and then changed more and more smoothly after 2015.
In terms of app categories, book and productivity apps
change the fastest, while communication and social apps
have the slowest change rate. Further, we find that three
factors (i.e., app usage frequency, app contextual diversity,
app usage popularity) are related to the usage context
changes, and their relationships follow a power law. Our
study opens up a new perspective for long-term app usage
context analysis and provides meaningful implications for
app developers.
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