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ABSTRACT
The phenomenal success of the newly-emerging social e-commerce
has demonstrated that utilizing social relations is becoming a promis-
ing approach to promote e-commerce platforms. In this new sce-
nario, one of the most important problems is to predict the value of
a community formed by closely connected users in social networks
due to its tremendous business value. However, few works have
addressed this problem because of 1) its novel setting and 2) its
challenging nature that the structure of a community has complex
effects on its value. To bridge this gap, we develop a Multi-scale
Structure-aware Community value prediction network (MSC) that
jointly models the structural information of different scales, in-
cluding peer relations, community structure, and inter-community
connections, to predict the value of given communities. Specifically,
we first proposed a Masked Edge Learning Graph Convolutional
Network (MEL-GCN) based on a novel masked propagation mecha-
nism to model peer influence. Then, we design a Pair-wise Com-
munity Pooling (PCPool) module to capture critical community
structures. Finally, we model the inter-community connections by
distinguishing intra-community edges from inter-community edges
and employing a Multi-aggregator Framework (MAF). Extensive
experiments on a large-scale real-world social e-commerce dataset
demonstrate our method’s superior performance over state-of-the-
art baselines, with a relative performance gain of 11.40%, 10.01%,
and 10.97% in MAE, RMSE, and NRMSE, respectively. Further ab-
lation study shows the effectiveness of our designed components.
Our code and dataset are available1.

CCS CONCEPTS
• Information systems → Online shopping; • Applied com-
puting→Online shopping; •Computingmethodologies→Mod-
eling methodologies.
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Social E-commerce Platform

Figure 1: Illustration of how communities form in social e-
commerce. The solid lines represent social networks, the ar-
rows represent actions such as recommending an item or is-
suing a group buying invitation, and the orange circles are
the boundaries of the formed communities.

1 INTRODUCTION
Social e-commerce is a newly-emerging form of e-commerce that
utilizes social networks to promote online transactions [18]. De-
spite the early less successful attempts such as developing storefront
sites inside social media (e.g., F-commerce, T-commerce), the im-
mense success of several recently developed social e-commerce
platforms that facilitate group buying (e.g., Pinduoduo2, Groupon3)
or promotes customer referrals (e.g., Beidian4, Yunji5) have shown
a promising future of social e-commerce and attracted extensive
attention from both academia and industry [3, 4, 6, 34].
2https://www.pinduoduo.com
3https://www.groupon.com/
4https://www.beidian.com
5https://www.yunji.com
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One common feature among these new social e-commerce plat-
forms is that customers are often encouraged by rewards to express
their item preferences on social media and recommend items to
their relatives and friends [22]. As a result, customers’ purchase de-
cisions are easily affected by one another [20], and highly engaged
communities around selling and buying are formed based on social
networks, as illustrated in Figure 1. Take Beidian, a leading social
e-commerce platform in China that promotes customer referrals as
an example. Motivated by rewards, some users have developed the
habit of sharing their favorite items with their social connections
and some further become opinion leaders that strongly affect their
friends’ purchase decisions. Over time, people connected to these
users form into communities that have a common purchase trend.

Assessing the economic value of such communities, defined as
the total transaction amount inside the community, is of great
importance to the prosperity of social e-commerce platforms be-
cause when people form into communities, their value is generally
boosted, and thereby these platforms typically make their market-
ing campaigns towards communities and manage their resources
around communities. This problem is also receiving increasing at-
tention in research communities owing to the prevalence of online
group activities and related business, which is not limited to social
e-commerce [2]. For example, nowadays, a group of travelers can
make their trip plan online together, and thus the key concern of
related companies is shifting from an individual perspective to a
group perspective. However, to the best of our knowledge, few
works have systematically addressed this problem.

To fill this gap, we seek to develop an effective predictive model
to forecast the value of given communities in social e-commerce.
Compared to predicting each user’s value, predicting community
value is much more challenging since different levels of the un-
derlying social networks can influence the value of communities.
Specifically, we identify three levels of structure important. The first
level is peer relationships. Existing theories have indicated a promi-
nent effect of social homophily on customers’ decision making
processes [23]. For example, it is likely for one to purchase on the
best friend’s recommendations. Thus, the more tightly connected
pairs in the community, the higher the community value. The sec-
ond level is the community structure beyond the pair-wise relations.
Take the edge density of a community as an example: the denser
the network, the easier for social influence to diffuse across the
community [21], and thus the higher the community value. Third,
in addition to the community structure, inter-community connec-
tions can also be a crucial factor that influences community value.
For example, high-value communities’ purchase trends may pass
to low-value communities through inter-community connections,
thereby increasing their value. This phenomenon is also referred
to as the strength of weak ties in social network literature [10].

In this work, we address the above challenges by developing a
Multi-scale Structure-aware Community value prediction network,
MSC for short, to jointly model the multi-scale structural infor-
mation at the same time. It is built based on graph convolution
networks (GCN) [13], a recent proposed state-of-the-art graph rep-
resentation model. Specifically, we first develop a Masked Edge
Learning Graph Convolution Network (MEL-GCN) based on our
proposed masked propagation mechanism, which can efficiently
learn the effects of peer relations on community value. In addition to

the power of GCN to model the structural information itself, we pro-
pose a Pair-wise Community Pooling module (PCPool) to capture
the critical community structure for prediction. Finally, to model
the inter-community connections, we distinguish intra-community
edges from inter-community edges by a Multi-aggregator Frame-
work (MAF).

We highlight our contributions as follows:
• To the best of our knowledge, this paper formally proposed
the community value prediction problem for the first time,
and we provide in-depth analyses and empirical evidence
demonstrating that modeling the multi-scale structure of
communities is keenly important for this problem.

• To predict community value, we develop a deep learning
framework, MSC, with three novel components, including
MEL-GCN, PCPool, and MAF, which can jointly model peer
relations, community structure, and inter-community con-
nections at the same time.

• We conduct extensive experiments on a large-scale real-
world dataset. The results show the superior performance
of MSC compared with various types of state-of-the-art
methods, with relative performance gains of at least 11.40%,
10.01%, and 10.97% in MAE, RMSE, and NRMSE, respectively.
Further ablation study verifies the effectiveness of each de-
signed components, and the case study and sensitivity study
show that MSC provides robust and interpretable predic-
tions.

2 OBSERVATION AND PROBLEM
FORMULATION

2.1 Observation and Motivation
As we discussed before, community value is influenced by multi-
scale structural information, including peer relations, community
structure, and inter-community connections. As we seek empirical
evidence supporting the theoretical analyses, we find that prior
literature only provides empirical evidence of the effects of peer
relations, while the impacts of community structure and inter-
community connections are under-explored. Thus, we conduct
data analysis on a large-scale dataset collected from Beidian (See
Section 4.1.1 for details). The results are discussed as follows:

Peer Relations. Prior work on social e-commerce has already
provided abundant empirical evidence on the non-negligible effects
of peer relations on community value. For example, Xu et al. [34]
demonstrate that when recommended by friends, the purchase
conversion rate in social e-commerce is three to ten times higher
than that of the traditional e-commerce scenarios. In other words,
such peer influence can significantly increase community value.

Community Structure. We use the purchase amount of one
month as a proxy of community value and visualize the correlations
between the number of edges inside a community and the commu-
nity value in Figure 2, controlling the size of the community. The
results reveal a positive correlation between the number of edges
inside the community and the community value. Note that the
number of edges inside a community reflects the community’s den-
sity when the community size is controlled. Therefore, the above
results further validated the theory that the denser the network,
the easier for social influence to diffuse, thereby the higher the
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Figure 2: The correlation between community value and the
number of edges inside a community. The right figure shows
the details of the orange box area of the left figure. Note that
the absence of data points causes the black part in the upper
left of the left figure.
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Figure 3: The correlation between community value and
the number of edges outside a community. The right figure
shows the details of the orange box area of the left figure.

community value. In conclusion, community structure is indeed
vital for community value prediction.

Inter-community Connections. We also visualize the corre-
lations between the number of edges outside a community and
community value in Figure 3, controlling the number of edges in-
side a community. Here, we also controlled the community size by
selecting only the communities with a size of 50. The results show a
positive correlation between the number of edges outside the com-
munity and community value, which suggests inter-community
connections affect community value.

The above observations further motivate us to model the multi-
scale structural information.

2.2 Problem Statement
The goal of community value prediction is to predict the total
purchase amount of given sets of users in a future time period.
Specifically, it can be formally defined as follows: given a social
network 𝐺 , a user feature matrix 𝑿𝒗 , a user interaction feature
matrix 𝑿𝒆 , and a set of communities C, the objective is to learn a
mapping function to predict the value of each given community 𝒚,
which can be formulated as follows,

𝒚 = 𝐹 (𝐺,𝑿𝒗 ,𝑿𝒆, C), (1)

where𝑿𝒗 ∈ R𝑑𝑣0×𝑁 ,𝑿𝒆 ∈ R𝑑𝑒0×𝐾 ,𝒚 ∈ R𝑀 , andC = {𝐶1,𝐶2, ...,𝐶𝑀 }
where𝐶𝑖 denotes subset of users, with 𝑑𝑣0 and 𝑑𝑒0 as the dimension

of node features and edge features, respectively. Here, 𝑁,𝐾,𝑀 is
the number of users, user relations and communities, respectively.

In this paper, we model the social network G as a graph, with
users modeled as nodes and user relations modeled as edges. Thus,
we have 𝐺 = (V, E) with |V| = 𝑁 , |E | = 𝐾 , and its adjacency
matrix 𝑨 ∈ R𝑁×𝑁 . We use the sum of purchase of all the members
in each community in a future period as a proxy of community
value.

3 MODEL FRAMEWORK
As shown in Figure 4, our proposed MSC model consists of four
layers with three key components: (1) the Masked Edge Learning
Graph Convolutional Network (MEL-GCN), which models peer
relations by a novel graph convolutional network that leveraging
both the node features and edge features to learn a mask vector that
controls the propagation step of GCN, (2) the Pair-wise Community
PoolingModule (PCPool), which facilitates the GCN-based model to
capture the key community structure by a novel pair-wise pooling
mechanism to map the node embeddings learned by MEL-GCN to
community embeddings for prediction, (3) the Multi-aggregator
Framework (MAF), which models the inter-community connections
by distinguishing intra-community edges from inter-community
edges. In the following sections, we elaborate on the details of the
above key components of our designed framework.

3.1 Masked Edge Learning GCN
To capture the community value that mainly resides in one’s social
network in social e-commerce, our first step is to model peer rela-
tions. It is a challenging task due to the complex nature of social
influence. For instance, for close friends who did not get in touch for
long, their relationship may still contain great value. Thus, we need
to take both the node features and edge features into consideration
and jointly learn the relation between each pair of users.

Graph Convolutional Network (GCN) is a natural choice for
modeling the above problem. However, the original GCN model
cannot effectively utilize the edge features. To tackle this problem,
most prior work either treats edges as new nodes [1] or learns a
single edge weight as the adjacency matrix [13]. Both approaches
lack a fine-grained granularity in leveraging the edge features.
Motivated by the shortcomings of existing work, we proposed MEL-
GCN,whichmodifies the propagation step of GCN tomodel the peer
relations with a fine-grained granularity. We illustrate the details
of this mechanism in Figure 5. Specifically, MEL-GCN contains two
modules, namely the Edge Learning module and the Masked Edge
Learning Convolutional (MELConv) module. The Edge Learning
module takes the node embeddings 𝑯𝒗 = [𝒉𝒗𝒊 ,𝒉𝒗2 , ...,𝒉𝒗𝑵 ], edge
embeddings 𝑯𝒆 = [...,𝒉𝒆𝒊𝒋 , ...], ((𝑖, 𝑗) ∈ E) from the embedding
layer, along with the adjacency matrix 𝑨 as inputs. For each pair of
connected nodes, it learns a mask vector leveraging both the node
embeddings 𝒉𝒗𝒊 and 𝒉𝒗𝒋 , and the corresponding edge embeddings
𝒉𝒆𝒊𝒋 , which can be formulated as follows,

𝝐𝒊𝒋 = 𝚯
(1)
𝝐 𝜎

(
𝚯
(0)
𝝐

(
𝒉𝒗𝒊 | |𝒉𝒗𝒋 | |𝒉𝒆𝒊𝒋

)
+ 𝒃 (0)𝝐

)
+ 𝒃 (1)𝝐 , (2)

where (·| |·) denotes concatenation, 𝜎 (·) is a non-linear activation
function, and we adopt ReLU [24] in our implementation. 𝚯(0)

𝝐 ∈
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Figure 4: The architecture of our proposed Multi-scale Structure-aware Community Value Prediction Network (MSC). Here,
we take the prediction of a demo community as an example. The multi-aggregator MEL-GCN layer takes the node embed-
dings, edge embeddings, and the adjacency matrix of community 𝐶1 as inputs, and learns a node representation for each
node by a masked edge learning graph convolutional network with different aggregators for intra-community edges and
inter-community edges. The PCPool layer transforms the learned node representations to community representations for
prediction through a pair-wise pooling mechanism controlled by the selected seed nodes that introduce prior knowledge.

R𝑑𝜖×(2𝑑𝑣+𝑑𝑒 ) , 𝚯(1)
𝝐 ∈ R𝑑𝜖×𝑑𝜖 , 𝒃 (0)𝝐 , 𝒃 (1)𝝐 ∈ R𝑑𝜖 are model parame-

ters. 𝑑𝑣, 𝑑𝑒 , 𝑑𝜖 represent the dimension of node embeddings, edge
emgeddings and MELConv output, respectively. 𝝐𝒊𝒋 ∈ R𝑑𝜖 is the
mask vector learned for the propagation step of GCN, and it is
worth noting that 𝝐𝒊𝒋 ≠ 𝝐𝒋𝒊 . Intuitively, 𝝐𝒊𝒋 characterizes how a
user is influenced by its neighbors. This influence can either be
positive or negative, thereby the value of the mask vector is not
restricted in [0, 1]. After learning such a mask vector for each edge
in the graph, we feed them into the MELConv module. For each
node, MELConv updates the hidden states of layer 𝑙 𝒉𝒍𝒗𝒊 by aggre-
gating of all its neighbors controlling by the learned masked vector,
which can be formulated as follows,

𝒉𝒍+1𝒗𝒊 = 𝜎
©«𝚯𝒍

𝒉𝒉
𝒍
𝒗𝒊 +

∑
𝑗 ∈N(𝑖)

(𝚯𝒍
𝒉𝒉

𝒍
𝒗𝒋 ) ⊙ (𝑷 𝒍

𝝐𝝐𝒊𝒋)
ª®¬ , (3)

where ⊙ refers to element-wise multiplication. N(𝑖) is the set that
contains the neighbors of user node 𝑖 . 𝚯𝒍

𝒉 ∈ R𝑑𝑙+1×𝑑𝑙 is the model
parameter, where 𝑑𝑙 is the hidden dimension of 𝑙 layer of MELConv.
𝑷 𝒍
𝝐 ∈ R𝑑𝑙+1×𝑑𝜖 is the dimension transformation matrix designed to

adapt the dimension of the mask vector to the output dimension
of layer 𝑙 , which is also a learnable parameter. In our framework,
we stack two MELConv layers and add an readout operation after
each MELConv to enhance the representation power of our model.

To sum up, MEL-GCN models peer relations as a mask vector
that controls the propagation step of GCN and outputs the learned
representations of each node.
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Figure 5: An illustration of the framework of MEL-GCN.

3.2 Pair-wise Community Pooling
The community value prediction task is essentially a graph predic-
tion task. Thus, after we obtain node-level representations from
MEL-GCN, we still need to learn a pooling function to map the
node-level representations to graph-level representations of each
community for prediction.

As illustrated in Section 2, the community structure is keenly
important for predicting community value in social e-commerce.
However, it is difficult for GCN with the state-of-the-art pooling
methods to accurately capture the high-order structure information
of a graph [17]. To tackle this challenge, we design a novel pair-
wise community pooling method, PCPool for short, to facilitate our
model to capture the critical community structure for prediction.
The main idea is to integrate the prior knowledge into the pooling
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process as a supervised signal. Specifically, our method consists
of two steps. The first step is to select a set of most important
nodes S utilizing the prior knowledge. In social e-commerce, we
can reasonably assume that users with more connections are more
important for community. Thus, we select the top 𝑟% of nodes with
the highest degrees as seed nodes. Here, 𝑟 is a hyper-parameter of
the model. Note that this selection algorithm can be easily extended
to other complicated ones. This step can be formally formulated as
follows,

S = {𝑖 |𝑖 ∈ rank(degree(𝑉 , 𝐸), ⌈𝑟𝑁 ⌉)}, (4)
where 𝑟𝑎𝑛𝑘 (·, 𝑘) is the function that returns the indices of the
top 𝑘 value, ⌈·⌉ is the ceiling function, and 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑉 , 𝐸) is the
function that returns the degree of each nodes in a given graph 𝐺 .
Given the set of seed nodes S and the output node representations
𝒉
𝒈
𝒗𝒊 from MEL-GCN, the seccond step of PCPool is to conduct a

pair-wise concatenation operation between the seed nodes and
all the nodes in the graph. Then, we feed the results to a linear
layer followed by a mean pooling to learn the representations of
community 𝒉𝒄𝒎, (𝑚 ∈ C), formulated as follows,

𝒉𝒄𝒎 =
1

𝑁𝑚 × 𝑆
∑

(𝑖, 𝑗) ∈V𝑚×S
𝜎

(
𝚯𝒄

(
𝒉
𝒈
𝒗𝒊 | |𝒉

𝒈
𝒗𝒋

)
+ 𝒃𝒄

)
, (5)

where 𝑁𝑚, 𝑆 are the number of nodes in community 𝑚 and the
number of seed nodes, respectively; 𝚯𝒄 ∈ R𝑑𝑐×2𝑑𝑔 and 𝒃𝒄 ∈ R𝑑𝑐
are the model parameters with 𝑑𝑔, 𝑑𝑐 as the dimension of the output
of MEL-GCN and the output of PCPool, respectively. Intuitively,
PCPool can capture the important community structure by leverag-
ing the prior knowledge to identify important nodes and learning
the important relationships between nodes.

3.3 Multi-Aggregator Framework
As we illustrated in Section 2, inter-community connections are
also a crucial factor that affects the value of a community. Even
though the users between community could be weakly connected,
this impact of such connection is non-negligible for its ability of
diffusing the purchase trend from one community to another.

To effectively model the inter-community connections, we have
two main designs. First, we take the inter-community edges into
consideration and formulated the problem as a subgraph predic-
tion task. Second, we noticed the fact that a normal GCN cannot
differentiate the edges inside community with the edges outside
the community, yet there are fundamental differences between
the effects of inter-community edges and intra-community edges
on community value. As such, we propose to use different GCN
aggregators for neighbor nodes inside community and outside com-
munity, and thus Equation (3) can be rewritten as follows,

𝒉𝒍+1𝒗𝒂𝒊
= 𝜎

©«𝚯𝒍
𝒉𝒂𝒉

𝒍
𝒗𝒂𝒊

+
∑

𝑗 ∈N𝑎 (𝑖)
(𝚯𝒍

𝒉𝒂𝒉
𝒍
𝒗𝒂𝒋 ) ⊙ (𝑷 𝒍

𝝐𝒂𝝐𝒊𝒋)
ª®¬ ,

𝒉𝒍+1𝒗𝒐𝒊
= 𝜎

©«𝚯𝒍
𝒉𝒐𝒉

𝒍
𝒗𝒐𝒊

+
∑

𝑗 ∈N𝑜 (𝑖)
(𝚯𝒍

𝒉𝒐𝒉
𝒍
𝒗𝒐𝒋 ) ⊙ (𝑷 𝒍

𝝐𝒐𝝐𝒊𝒋)
ª®¬ ,

𝒉𝒍+1𝒗𝒊 = 𝒉𝒍+1𝒗𝒂𝒊
+ 𝒉𝒍+1𝒗𝒐𝒊

,

(6)

whereN𝑎 (𝑖) andN𝑜 (𝑖) are the sets that contain the intra-community
neighbors and inter-community neighbors of node 𝑖 , respectively;
𝒉𝒍+1𝒗𝒂𝒊

and 𝒉𝒍+1𝒗𝒐𝒊
are the output of the GCN aggregators for intra-

community neighbor nodes and inter-community neighbor nodes,
respectively. In this way, we can effectively capture the different
effects of inter-community connections on community value.

3.4 Inputs, Outputs and Training
Inputs and the Embedding Layer. The embedding layer takes
the raw features, including node features 𝑿𝒗 that contains user
demographics and users’ history purchase amount and edge fea-
tures 𝑿𝒆 that contains the history interaction times of each pair of
users as inputs and transforms them into nodes embeddings𝑯𝒗 and
edge embeddings 𝑯𝒆 with two fully connected layers, respectively,
which can be formulated as follows,

𝑯𝒗 = 𝜎

(
𝚯
(1)
𝒗 𝜎

(
𝚯
(0)
𝒗 𝑿𝒗 + 𝒃 (0)𝒗

)
+ 𝒃 (1)𝒗

)
,

𝑯𝒆 = 𝜎

(
𝚯
(1)
𝒆 𝜎

(
𝚯
(0)
𝒆 𝑿𝒆 + 𝒃 (0)𝒆

)
+ 𝒃 (1)𝒆

)
,

(7)

where 𝚯
(0)
𝒗 ∈ R𝑑𝑣×𝑑𝑣0 , 𝚯(0)

𝒆 ∈ R𝑑𝑒×𝑑𝑒0 , 𝚯(1)
𝒗 ∈ R𝑑𝑣×𝑑𝑣 , 𝚯(1)

𝒆 ∈
R𝑑𝑒×𝑑𝑒 , 𝒃 (0)𝒗 , 𝒃 (1)𝒗 ∈ R𝑑𝑣 , 𝒃 (0)𝒆 , 𝒃 (1)𝒆 ∈ R𝑑𝑒 are model parameters.
The outputs of embedding layer are feed into the Mutli-aggregator
MEL-GCN Layer and PCPool Layer for follow-up operations.
Outputs. The prediction layer takes community embeddings 𝑯𝒑 ∈
R𝑑𝑝×𝑀 from the PCPool layer as inputs to predict community value.
Here, we use two fully connected layers to predict labels, which is
a widely-adopted framework[28]. It can be formulated as follows,

�̂� = 𝜎

(
𝚯𝒇 𝒄𝑯𝒑 + 𝒃𝒇 𝒄

)
𝒑, (8)

where 𝚯𝒇 𝒄 ∈ R𝑑𝑝/2×𝑑𝑝 , 𝒃𝒇 𝒄 ∈ R𝑑𝑝/2, 𝒑 ∈ R𝑑𝑝/2 are model param-
eters. Note that this prediction function can be extended to other
complicated ones.
Training. After we obtain the predictions, we use the widely-
adopted mean absolute error loss function[9] with 𝑙2 regularization
on the parameters in MSC to prevent over-fitting, which can be
formulated as follows:

L =
1
𝑀

∑
|�̂� −𝒚 | + 𝜆

∑
𝚯∈P

∥𝚯∥2 , (9)

where 𝒚 and �̂� are ground truths and model predictions, respec-
tively; P denotes the set that contains all model parameters. We
use MAE loss rather than MSE loss because the standard deviation
of community value in our dataset is large, and MAE is more stable
to outliers.

4 EXPERIMENTS
To comprehensively evaluate our proposed model, we conduct
extensive experiments on a large-scale real-world dataset to answer
the following research questions:

• Q1: How is the overall prediction performance of MSC com-
pared with various state-of-the-art methods?

• Q2: How do different components of MSC, including MEL-
GCN, PCPool, and MAF, contribute to the performance?
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Statistics Value
The number of communities 1500

The average number of nodes inside community 56.4
The number of nodes 76649
The number of edges 153823

The number of edges inside community 119302
The number of edges outside community 34521

Average node degree 4.013
Average degree centrality of communities 0.968

Average clustering coefficient of communities 0.267
Table 1: The basic statistics of the dataset.

• Q3: Is MSC robust to different community sizes and different
community overlap ratios?

• Q4: Can MSC provides a certain level of interpretability
and capture the key structural information that affects the
community value?

• Q5: How do different hyper-parameter settings affect the
performance of MSC?

4.1 Experiment Setup
4.1.1 Datasets. We evaluate our proposed MSC based on a large-
scale real-world dataset collected from a leading social e-commerce
platform in China, Beidian. To the best of our knowledge, we are
the first to study the community value prediction problem in social
e-commerce, and thereby no public datasets are available. We make
our dataset public to motivate future researches1.

Our dataset covers all the user relations with interaction data,
user demographic data, purchase data on the platform from 11/2018
to 12/2019, and the community partition of Beidian. Specifically,
the interaction data records the number of times that users share
items with others. The user demographic data includes each user’s
age, gender, status, and registration time. The community partition
is directly adapted from Beidian’s official version, which is natu-
rally defined by Beidian’s social e-commerce business model that
focuses on active sharing users or key opinion leaders. Those that
usually interact with these users are defined as communities in
Beidian. Note that in practice, we can not only obtain communi-
ties by naturally defined rules in application scenarios but also by
existing community detection algorithms based on social network
structures and user interaction histories [29].

The statistics of this dataset are reported in Table 1. In our ex-
periments, we use data from 11/2018 to 11/2019 to predict the com-
munity value in 12/2019. We use the user purchase data to compute
the label of each community and get a result with a mean of 808.2
and a standard deviation of 1372.9.

4.1.2 Baseline Methods. To the best of our knowledge, we are
the first to leverage the network structure information to model the
community value, and thereby no previous methods can be directly
applied to the problem. Thus, we compared the performance of
MSC with the state-of-the-art methods from four research lines
with minimum modification to adapt them to the problem.

Traditional Machine Learning Methods: Prior work on pre-
dicting customer value usually designs various hand-crafted rules
to extract user-specific features and feed these features into regres-
sion models for prediction. This method is also widely used in the
industrial environment. We adopt three baselines, including:

• Random Forest (RF) [30]: An ensemble learning method
based on decision trees.

• Support Vector Regression (SVR) [33]: A classical supervised
learning model.

• Light Gradient Boosting Machine (LGBT) [14]: A recently
proposed state-of-the-art tree-basedmachine learningmodel.

For a fair comparison, besides user-specific features used in prior
work [30], we also extract various network-specific features, in-
cluding degree, the number of edges and triangles inside each com-
munity, network average clustering coefficient [32] and network
average degree centrality [25] as the inputs of these baselines.

Network Embedding Methods: We also compare our model
with the state-of-the-art network embedding models, including
DeepWalk [26] and Node2Vec [11], which are briefly introduced as
follows:

• DeepWalk [26]: An unsupervised node embedding model
based on the random walk and skip-gram algorithms. Nodes
sharing lots of links have similar embeddings.

• Node2Vec [11]: A generalization of DeepWalk that balances
between network homophily and structural equivalence.

To adapt network embedding models to our problem, we take
three steps. First, we pre-train the network embedding model to
learn node representations of each node in a community. Second,
we concatenate the learned node embeddings with feature em-
beddings learned from the embedding layer of MSC, and obtain
community embeddings via a mean pooling operation. Finally, we
feed the community embeddings into two fully connected layers
for prediction, which is the same as MSC.

GCN-based Methods: We also compare our model with state-
of-the-art GCN models with different pooling methods. For this
type of methods, the input and prediction layers are the same as
our MSC model for a fair comparison. We introduce methods for
comparison as follows,

• GCN [13]: A current state-of-the-art variant of GCN that
can efficiently generate node embeddings. A mean pooling
method is used to obtain community embeddings for predic-
tion.

• GCN + gPool [8]: gPool is one of the state-of-the-art pooling
methods for GCN. We use it to obtain community embed-
dings in this method.

• GCN + Self-Attention Graph Pooling (SAGPool) [19]: SAG-
Pool is an attention-based pooling algorithm for GCN, which
can learn a soft assignment of node embeddings to graph em-
beddings. We use SAGPool to obtain community embedding
in this method.

Customer Value Prediction Methods: In this work, we take
the sum of the purchase amount as a proxy of community value.
Thus, we can compare our model with its variants that first predict
each customer’s purchase amount and then sum up the results of
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Group Model MAE Gain RMSE Gain NRMSE Gain

Traditional ML
RF [30] 482.97 ± 21.02 −15.09% 911.14 ± 43.38 −10.01% 0.099 ± 0.009 −19.27%
SVR [33] 483.19 ± 28.85 −15.15% 939.13 ± 42.57 −13.39% 0.106 ± 0.011 −27.71%
LGBM [14] 475.12 ± 21.45 −13.22% 918.01 ± 38.26 −10.84% 0.101 ± 0.010 −21.68%

Network Embedding DeepWalk [26] 510.55 ± 22.17 −21.67% 1077.63 ± 62.81 −30.11% 0.151 ± 0.013 −81.92%
Node2Vec [11] 499.05 ± 23.10 −18.93% 991.43 ± 51.34 −19.70% 0.098 ± 0.009 −18.07%

GCN-based Models
GCN [13] 469.42 ± 27.54 −11.87% 936.59 ± 49.95 −13.08% 0.091 ± 0.006 −10.97%

GCN + gPool [8] 467.45 ± 22.38 −11.40% 946.22 ± 54.89 −14.24% 0.092 ± 0.006 −12.19%
GCN + SAGPool [19] 474.89 ± 21.44 −13.17% 941.27 ± 53.92 −13.64% 0.091 ± 0.006 −10.97%

Customer Value CVP 516.25 ± 21.81 −23.03% 962.76 ± 59.79 −16.24% 0.121 ± 0.008 −45.78%
Ours MSC 419.61 ± 15.30 - 838.23 ± 34.24 - 0.082 ± 0.003 -

Table 2: Performance comparison with different categories of baseline models in terms of MAE, RMSE, and NRMSE.

users inside each community to get community value. We imple-
ment this method by deleting our PCPool layer in MSC and directly
send the node embeddings that output from the MEL-GCN layer
to a fully connected layer for customer value prediction without
pooling. We denote this model by CVP.

4.1.3 Evaluation Protocols. In our experiments, we perform 10-
fold cross-validation on our dataset following prior work [5]. We
evaluate the prediction results by widely used metrics in regression
tasks, including Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and Normalized Root Mean Square Error (NRMSE).
Specifically, we include MAE due to its robustness to outliers, and
NRMSE to show the relative performance of the models.

4.1.4 Parameter Settings and Reproducibility. In our exper-
iments, we use a node embedding size of 40 and an edge embed-
ding size of 20. For all GCN-based layers, including normal GCN
and our proposed MELConv, we stacked two layers with the size
of hidden nodes set to 32. For each GCN-based layer’s output,
we perform a readout operation that saves each node’s hidden
state, and we concatenate the saved results of every GCN-based
layer as the input of the prediction layer. To prevent overfitting,
we add a dropout operation before the prediction layer. For MSC,
we set the selection ratio of pair-wise community pooling as 0.2.
During the training process, we used the Adam optimizer [15]
for gradient-based model optimization in a mini-batch mode, and
we perform a grid search on learning rate, batch size, 𝑙2 regu-
larization coefficient, and dropout rate to find the best parame-
ters for each model including all the baselines. Specifically, we
search the learning rates ∈ {0.025, 0.02, 0.015, 0.01, 0.005, 0.001},
batch sizes ∈ {45, 54, 75, 90, 135}, 𝑙2 regularization coefficients ∈
{1𝑒 − 3, 5𝑒 − 4, 1𝑒 − 4, 5𝑒 − 5, 1𝑒 − 5, 5𝑒 − 6}, and dropout rates
∈ {0.4, 0.5, 0.6}. We make our implementation code of the MSC
public1.

4.2 Overall Performance Comparison (Q1)
Table 2 shows the prediction performance of all categories of meth-
ods on our dataset with relative performance gains. We summarize
key observations and insights as follows:

• MSC achieves significantly better performance over differ-
ent types of state-of-the-art methods in terms of all three
evaluation metrics. Specifically, it provides a relative perfor-
mance gain of 11.40%, 10.01%, and 10.97% inMAE, RMSE, and
NRMSE, respectively, comparing to the best baselines, which
demonstrates the effectiveness of our proposed methods.

• Among all the baselines, we find that all GCN-based meth-
ods, including MSC, GCN, GCN+gPool, and GCN+SAGPool,
perform consistently better than others. On the one hand,
this observation indicates the promising power of GCN in
capturing the hidden patterns of non-Euclidean data. On the
other hand, it also suggests predicting the value of commu-
nity needs to model the community’s network structure and
individual attributes jointly.

• One interesting observation is that among GCN-based meth-
ods, prior state-of-the-art pooling methods, including gPool
and SAGPool, perform worse than mean pooling. The reason
lies in two aspects. First, as demonstrated in [17], these pool-
ing methods are not suitable for capturing the high-order
structural information of a community, which is the key to
predicting community value. Second, these pooling methods
are selection-based pooling methods. In other words, these
methods only select a part of the nodes to compute the com-
munity embeddings and thereby may result in information
loss.

• Although MSC is also a GCN-based model, it achieves con-
sistent better performance than GCN with mean pooling,
which suggests that our novel designs, including MEL-GCN,
PCPool, and MAF, indeed facilitate the original GCN model
to better characterize the key structure for community value
prediction.

• MSC performs significantly better than MVP, which sug-
gests that summing up the prediction of customer value to
get community value results in an accumulation of errors,
and the community value prediction problem is essentially
different from the customer value prediction problem.
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Figure 6: Ablation study with six variants of MSC across different metrics.

4.3 Ablation Study (Q2)
Our proposedmodel MSC consists of three key components, namely
MEL-GCN, PCPool, and MAF. To better understand how each com-
ponent contributes to the model performance, we conduct an abla-
tion study. Specifically, we consider six variants of our proposed
method, includingMSC-mel, MSC-pc, MSC-maf, MSC-mel-maf, MSC-
mel-pc, MSC-maf-pc. Here, mel stands for the MEL-GCN, pc stands
for PCPool, and maf stands for the MAF. For the six models men-
tioned above, having a specific suffix name means substituting the
corresponding MSC module with a simplified one. In particular, the
simplified version of MEL-GCN, PCPool, and MAF are normal GCN
propagation, mean pooling, and one aggregator for all kinds of
nodes, respectively. The evaluation results are reported in Figure 6,
and we have the following three key observations:

• The full version ofMSC achieves the best performance across
all evaluation metrics. Removing any of the components re-
sults in a certain level of decrease of the performance, which
suggests that all the components are effective in characteriz-
ing the structure of different scales.

• Each combination of the three components has a perfor-
mance gain, which suggests the three components capture
the structural information that affects community value from
different perspectives.

• Among the three key components, PCPool is the most ef-
fective one for predicting the community value. Specifically,
removing PCPool fromMSC (i.e.,MSC-pc) results in a perfor-
mance degradation of 6.32%, 8.69%, and 7.31% in MAE, RMSE,
and NRMSE, respectively. It is even worse than removing
both MEL-GCN and multi-aggregator from MSC. This ob-
servation indicates that pair-wise community pooling can
effectively capture the useful community structure that in-
forms community value, and community structure is more
informative for community value prediction, comparing to
peer relations and inter-community connections.

4.4 Robustness Analysis (Q3)
In practice, the model’s robustness determines its applicability.
Thus, evaluating whether the performance of our model is con-
sistently better than baseline methods is also valuable. In the com-
munity value prediction problem, we identify two factors keenly

Figure 7: Performance comparison on datasets with differ-
ent community sizes and different community overlap ra-
tios.

important for robustness, including the community size and com-
munity overlap ratio.

Communities with different sizes differ dramatically in their
value and structure, and we can plausibly assume that how dif-
ferent structural information contributes to community value is
different for communities with very different sizes. To examine
the robustness of our model’s performance to community size, we
divide the model outputs on the test set into different groups ac-
cording to the community size and calculated NRMSE for different
groups. As shown in Figure 7(a), our model performs consistently
better than all the baseline methods for communities of different
sizes, and the performance is stable across different community
sizes, which demonstrates the robustness of our model.

In practice, communities defined by rules or detected by algo-
rithms may differ significantly in their overlap ratios, defined as the
ratio of overlap nodes of communities in all nodes. Thus, whether
the model is robust to different community overlap ratios greatly
affects its applicability. To examine this problem, we first construct
four different datasets with different community overlap ratios
based on the original dataset. Specifically, the community overlap
ratio for our original dataset is 11%. By assigning the nodes in multi
communities to the community they interact with the most, we get
two new dataset with lower community overlap ratios. By itera-
tively assigning the node-pairs connected by the most interacted
inter-community edges to an additional community, we get two
new datasets with higher community overlap ratios. We test all
the models on the four constructed datasets and show the results



Community Value Prediction in Social E-commerce WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

C1 (293,199) C2 (1364,1526)

C3 (2538,2352) C4 (1940,2135)

Figure 8: Case study of the edge learning weights of MEL-
GCN, where the numbers in parentheses represent the pre-
diction value and true value of the community.

in Figure 7(b). We find that MSC performs consistently better in
datasets with different community overlap ratios, which indicates
that our proposed method is robust in vast practical scenarios.

4.5 Case Study (Q4)
To validate whether our proposed model can provide a certain
degree of interpretability, we conduct a case study on the learned
weights of the mask vectors in MEL-GCN, which characterizes the
influence of a user on its neighbors. We calculate the mean value
of the mask vectors as the weight of the edges and visualized the
community structure of four communities, as shown in Figure 8,
where the color of the edge represents the strength of the influence,
and the color of the node reflects its degree. The darker the color,
the stronger the influence, the higher the degree.

The results show that the predictions can be well explained.
Specifically, the value of community 𝐶1 is low because most of its
users are loosely connected, and it lacks users with strong influ-
ence. In contrast, for the densely connected community 𝐶2, MSC
identifies many users with strong influence. In terms of 𝐶3 and
𝐶4, we find that although 𝐶4 is loosely connected, there are many
strong connections between it and a high-value community 𝐶3,
which suggests the high value of 𝐶3 may result from the strong
influence of 𝐶4. These results show the ability of MSC to provide
interpretations for the prediction results.

5 HYPER-PARAMETER SENSITIVITY
ANALYSIS (Q5)

To explore how MSC’s performance is affected by different hyper-
parameters, we further study the sensitivities of several key hyper-
parameters by varying them in different scales. Specifically, we
investigate how the node embedding size 𝑑𝑣 and the seed ratio 𝑟 of
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Figure 9: Hyper-parameter sensitivity analysis on the node
embedding size and the seed ratio of PCPool.

the PCPool module affect the prediction performance. As shown
in Figure 9, among all the settings, 𝑑𝑣 = 30, 𝑟 = 0.1 achieves the
best performance. Moreover, we find that there is a trend that the
performance decreases as the seed ratio increases. The reason is
that in our model, the seed ratio controls the prior information that
we introduce to the model as a supervised signal. When it is large,
this signal becomes noisy and meaningless.

6 RELATEDWORK
CustomerValuePrediction.Community value prediction is closely
related to the long-standing problem of customer value predic-
tion [5, 12], yet exhibits significant differences. These two problems
are both concerned with the financial benefits an entity can bring to
a company. However, Customers’ value mainly refers to their own
purchase and can be inferred from their past behaviors. In contrast,
the value of a community is more about the marginal gain that
results from users’ different organizational forms, and it is closely
related to the community’s underlying social network structure.
This work focuses on designing a deep learning framework that can
effectively model different structure information for community
value prediction.

Graph Convolutional Networks. The recent proposed graph
convolutional network (GCN) has successfully adapted the rep-
resentation power of deep neural networks to graph-structured
data [16] and achieved state-of-the-art performance in various net-
work learning tasks [27, 31, 36]. Its core idea is to iteratively update
the state of each node according to the states of their neighbors.
However, common GCNs cannot effectively model edge features. To
tackle this problem, previous work either uses the edge attributes
to learn a weight as the adjacency matrix [13], which lacks fine-
grained granularity, or treats edges as new nodes [1], which lacks
interpretability. How to better utilize the edge features for com-
munity value prediction is one of the key concerns of this work,
and we developed a Masked Edge Learning Graph Convolutional
Network based on a novel masked propagation mechanism that
efficiently utilized the edge features to model peer influence.

Pooling Techniques for GCNs. To transfer the node embed-
dings to community embeddings, we need pooling operations. Ex-
isting pooling methods for GCNs can be categorized into clustering-
based pooling methods and selection-based pooling methods. The
core idea of clustering-based poolingmethods, includingDiffPool [36]
and EdgePool [7], is to assign nodes to a set of clusters, which is
often computationally expensive. Selection-based pooling methods,
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including gPool [8] and SAGPool [19], use a top-K node selection
procedure to form an induced subgraph, which may lose the origi-
nal graph structure information. Moreover, it is difficult for existing
pooling methods to effectively capture the high-order structure
information critical for community value. This work develops a
novel pair-wise pooling method to better capture the high-order
graph structure information for community value prediction.

7 CONCLUSION
In this work, we propose the community value prediction problem
for the first time, and we present a GCN-based framework MSC to
effectively capture the multi-scale structural information to address
this problem in social e-commerce. Specifically, MSC addresses the
challenges with three novel components: (1) a masked edge learn-
ing graph convolutional network that explicitly characterizes peer
relations; (2) a pair-wise community pooling module that effec-
tively captures the critical high-order community-level structural
information; (3) a multi-aggregator framework that enables us to
model the inter-community connections. Extensive experiments
on a large-scale real-world social e-commerce dataset show the
superior performance of our proposed MSC.

We open our dataset and call formore attention to the community
value prediction problem. In future, it is valuable to explore the
community value prediction problem on industry scale datasets.
Note that while in this work, we adopted GCN-based architecture, it
is possible forMSC to extend to industry scale dataset with neighbor
sampling technique [35]. Further, it is also valuable to explore how
to extend MSC to dynamic communities that change over time.
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