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Abstract—Recognizing representative living patterns in population is extremely valuable for urban planning and decision making.
Thanks to the growing popularity of location-based applications and check-ins on social networking sites, Point of Interest (POI) of a
location is quite often available in the trajectory data, which expresses user living semantics. However, adopting trajectory semantics
for living pattern recognition is an open and challenging research problem due to three major technical challenges: effective feature
representation, suitable granularity selection for habit unit, and reliable habit distance measurement. In this paper, we propose a
representation learning based system named habit2vec to represent user trajectory semantics in vector space, which preserves the
original user living habit information. We evaluated our proposed system on a large-scale real-world dataset provided by a popular
social network operator including 123,803 users for 1.5 months in Beijing. The results justify the representation ability of our system in
preserving user habit pattern, and demonstrate the effectiveness of clustering users with similar living patterns.

F

1 INTRODUCTION

With the increasing popularity of personal mobile devices
and location-based applications, large-scale semantic-rich
trajectories of individuals are being recorded and accumu-
lated at a faster rate than ever [1], where Point of Interest
(POI) of a location is often available and associated with the
trajectories [2]. POI information, as the semantics of location,
is a good indicator of the person’s behavior at the location
[3], [4]. Mining underlying patterns in trajectory semantics
through POIs therefore make it possible to recognize typical
living patterns in the city. Understanding living patterns in
population is of great importance, as it has the potential
to reveal people’s social and economic status [5], as well
as social capital [6], which provides key insights for city
planners and decision makers. Despite its great significance,
there have been few studies dedicated to living pattern
recognition in population via semantic-rich trajectory data.

Recently, emerging research on trajectories focuses on
mining their frequent patterns. For instance, Lee et al. [7]
and Yao et al. [8] propose trajectory clustering methods to
cluster users who share similar geographical routes. How-
ever, these works on trajectory pattern mining are based
on the viewpoint of physical location transition patterns
and therefore, constrained to only discovering common
mobility pattern of people located in nearby geographical
regions. Meanwhile, there have been some works focusing
on mining trajectory semantics similarity. Jiang et al. [9]
make use of a PCA-based method to cluster daily patterns
of human activities through travel survey data; Furtado et
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al. [10] propose a multidimensional similarity measures to
compare semantic trajectories. However, these works typi-
cally measure trajectory semantics solely on static POI type
labels. Two trajectories with similar semantics but distinct
POI type labels (e.g. supermarkets and shops) will there-
fore be measured completely different. As a result, these
works often involve manually grouping POI type labels,
which heavily rely on prior knowledge and result in coarse
granularity.

In this paper, we seek to recognize typical living patterns
distributed in different geographical locations in population
through the semantics embedded in the trajectories. We
define the similarity of living patterns as engaging in similar
behavior at similar times instead of staying in geographi-
cally neighboring location. For instance, the people in the
city who follow the weekday routine: sleep at night in
residence district, get up at 9am, go to work in commercial
center from 10am to 6pm, and get back to arrive at home in
the residence district at 8:30pm, belong to the same living
pattern group, though they may be physically far away.

Nevertheless, recognizing typical living patterns in pop-
ulation through POI semantic is challenging. First, there is
no ready method to build user habit representation through
the varied-length and often biased POI records in trajectory
data. Second, it is difficult to select a suitable POI granu-
larity as there are usually multiple levels of coarse-grain
granularity. Third, it is also challenging to define accurate
metrics to measure the similarity between user habits to take
both semantics and time scheduling into account. Classical
approach fails to capture the semantic similarity between
different POI type as well as temporal variations of POI type
semantics.

To address the above three challenges, we propose a
representation learning-based system to convert trajectories
into living patterns. First, POI type transitions are extracted
from raw trajectory data. To solve the feature representa-
tion problem, they are put in a preprocessing layer, which
outputs a fixed length representation for each individual’s
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unbiased living habit. Next, a representation learning in-
spired feature extraction layer produces vector representa-
tion for each person’s living habit preserving both semantic
and temporal information in the same space. Therefore,
recognizing typical living pattern in population is reduced
to a classical clustering problem through our system. Our
contributions can be summarized as follows:

• To the best of our knowledge, we are the first to rec-
ognize human living patterns in population through
trajectory data along with the outsider semantic
information that breaks through the geographical
constraints.

• We propose a representation learning system named
habit2vec to represent the habit of a person as a vec-
tor, which upgrades the word2vec model according
to special characteristics of trajectories. The system
fits the objective of living pattern recognition and
solves the feature representation problem.

• Through extensive experiments, we evaluate our
proposed habit2vec system on a large-scale real-
world dataset that records the trajectory of 123,803
users for 1.5 months. The results justify the ability
of our system in preserving user habit information,
which discovers 13 typical weekday living habits and
12 typical weekend living habits, coinciding phys-
ical meanings. We show that our proposed system
achieves significant performance gain over baseline
methods.

The rest of the paper is structured as follows.Section 2
reviews related work. Section 3 identifies the problem and
discusses the key challenges. Section 4 proposes the frame-
work of our habit2vec system. We evaluate our proposed
system in Section 5 and provide concluding remarks in
Section 6.

2 RELATED WORK

We summarize the closely related works from three aspects:
trajectory mining, activity pattern modelling and represen-
tation learning.

Trajectory pattern mining: Extensive studies have been
dedicated to detecting the prevailing trajectory patterns in
large scale spatiotemporal data. However, previous works
mostly focus on identifying the popular location sequences
shared by different trajectories and grouping trajectories
based on their physical closeness [7], [11], [12]. Giannotti
et al. [13] designed T-patterns framework to address the
problem of detecting frequent sub-trajectories in spatiotem-
poral data. Mamoulis et al. [11] focused on mining frequent
periodic mobility patterns, Zheng et al. [14] investigated
the problem of detecting frequent traveling paths between
fixed locations, and Salidek et al. [15] leveraged principal
component analysis to extract mobility pattern for long-
term location prediction. As for trajectory clustering, Lee
et al. [7] proposed a partition-and-group framework to detect
popular common sub-trajectories and group similar trajec-
tories based on the shared sub-trajectories. [16] exploited
principal component analysis technique to extract latent mo-
bility patterns from raw trajectories and cluster trajectories
based on the latent features. However, this line of research

is limited in measuring the similarity between trajectories
based on their physical closeness, such as distance, overlap-
ping sub-trajectories and co-occurrences, therefore unable to
understand semantic patterns behind human mobility. More
recently, there have been works on semantic-rich trajectory
mining. Zhang et al. [17] proposed a hidden Markov model
based approach to discover user groups that share similar
mobility patterns taking into consideration mobility seman-
tics. Ying et al. [18], [19] adopted trajectory semantic feature
to assist location prediction. Zhang et al. [20] developed
Splitter system to mine fine-grained sequential patterns in
semantic trajectories. Yuan et al. [21] proposed e a Bayesian
non-parametric model to to discover periodic mobility pat-
terns for social media users by modeling the geographical
and temporal information. However, none of these works
focus on jointly modeling temporal and semantic aspect in
human mobility. Different from them, we investigate a novel
problem of mining living patterns embedded in trajectories.
Instead of building semantic-aware mobility model or min-
ing sequential pattern in semantic trajectory, we design a
methodology that captures the semantic features of living
patterns in a vector space so as to better understand user
social-economic behavior pattern.

Activity pattern modelling: Modelling the activity patterns
in individuals’ daily lives is an increasingly important topic
that has been extensively studied in recent years [22]. Some
early works study the nature of activity patterns (routine
behavior), and compare them with grammar in natural
language processing [23], [24]. Other works focus on mining
the activities behaviours from survey data. Eagle et al. [25]
utilized PCA algorithm to extract the features from semantic
annotated trajectories, and then identified clusters of activity
patterns. Farrahi et al. [26] adopted distant N-Gram topic
model to extract user mobile behavioral patterns. Banovic
et al. [27] proposed a decision-theoretic framework to ratio-
nalize the casual relationship in human routine behaviour
logs. Jiang et al. [9] exploited statistical learning techniques
to analyze an activity-based travel survey, where the spa-
tiotemporal points are labeled with activities. There are
also works dedicated to understanding user indoor mobil-
ity/occupancy pattern for location prediction [28] and smart
home heating [29]. While these works aimed to identify the
key patterns in individual’s daily activities, they heavily
relied on human-labeled survey data, which is typically not
representative and prevented population scale analysis. In
addition, unsupervised methods have also been developed
to model individual’s activity patterns. Furletti et al. [10]
proposed a method to infer the activities behind the GPS
records. Furtado et al. [30] developed an unsupervised
algorithm to measure similarity between semantic trajec-
tory data, where the spatiotemporal records are associated
with POIs, Cao et al. [31] studied user location revisitation
patterns in urban space and Xu et al. [32] proposed a
clustering method to identify popular temporal modes in
population. However, these works fell short of capturing
the semantic features of the trajectories, since they did not
properly model the correlation between activities or POIs.
Different from previous works, in this paper we develop an
unsupervised algorithm to model the semantic similarities
between unlabeled semantic-rich trajectories (i.e., user POI
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type transition traces), which shows promising results in
living pattern recognition.

Representation learning: Representation learning is a cate-
gory of unsupervised learning method that aims to extract
effective and low-dimensional features from the compli-
cated and high-dimensional data [33]. Various algorithms
have been designed to capture the features in different data
sources. In the area of natural language processing, Mikolov
et al. [34], [35] proposed word2vec, a neural network based
representation learning model, to extract the features of
words’ semantic meaning from their sequential orders. Pen-
nington et al. [36] designed a representation learning algo-
rithm, Glove, that captured the semantic meaning of words
based on their global co-occurrences features. In addition,
Perozzi et al. [37] and Tang et al. [38] introduced the repre-
sentation learning techniques into complex networks anal-
ysis, and they proposed different algorithms to derive rep-
resentation for nodes’ structural roles in the network. The
representation learning techniques have also been applied
in spatial-temporal data mining. Yao et al. [8] designed a
recurrent neural network to capture the physical features of
trajectories with a continuous vector, which enabled them to
detect trajectories that are similar in speed and acceleration
patterns. Zhang et al. [3] modelled the semantic meaning of
spatial-temporal points based on their co-occurrence with
the texts in social media’s check-ins. Different from previous
works, we develop an algorithm to extract effective semantic
representations for individuals’ living patterns from their
trajectories, i.e., the transition patterns between location
semantics. We demonstrate that our derived representations
facilitate the task of living pattern recognition on population
scale.

3 SYSTEM OVERVIEW

3.1 Motivation and Challenges
In this paper, we aim to cluster population into groups of
similar living habits. We consider living habits as people’s
regular behavior at specific times. As is often the case, a
person’s behavior at a time is strongly related to his current
location. Thus, we are motivated to develop a system to
derive the representation of people’s living habits from their
trajectories.

However, different from previous works on trajectory
mining, which aim at clustering people of similar geograph-
ical location transition pattern, we seek to group people who
share similarity in trajectory semantics, i.e., people who go
to similar type of places at similar time. To put it another
way, we aim to group individuals sharing similar daily
routine but not necessarily in nearby places. For this goal,
we filter out other information in trajectory data (e.g. GPS
information, user profile) and select the semantic informa-
tion, i.e., the transition series of different types of POIs, as
the principal input. The system outputs clusters of distinct
living habits reflected in the trajectory. Recognizing living
patterns and clustering people based on POI transition
series, however, is challenging for three reasons.

Feature Representation. Raw POI transition series in our
daily trajectories are sparse and quite often not uniformly
sampled in passively recorded trajectories. For instance,
users tend to use their phones more frequently during their

Fig. 1. System Architecture.

leisure time than during working hours. Therefore, there
tend to be more POI records at noon or in the evening. If
directly using the raw data as a feature, the user’s living
habit will be represented in a biased way. How to select
proper features to represent a user’s daily living habit is
therefore hard to manage.

Granularity Selection. A person’s daily habit is reflected
by a trace of POI transitions. However, there are multiple
levels of POI types. High-level types fail to capture mean-
ingful types of living patterns since they do not properly
distinguish semantics, while finer-grained types capture
semantic differences much better. How to select a proper
granularity to represent user’s living pattern is challenging.

Distance metric. Clustering people of similar living habits
requires a distance metric to measure the similarity be-
tween users’ living patterns while a good metric should
consider both semantic and temporal similarity. In terms of
semantics, people with high similarity should go to similar
types of locations every day. In terms of a temporal factor,
people with great similarity should have analogous time
scheduling. How to define an effective distance metric to
combine semantics and temporal factors so as to cluster
people who appear at similar POI types at close times is
of great difficulty.

3.2 System Overview

In order to effectively tackle the above three challenges, we
propose a representation learning based system to convert
trajectory into living pattern clusters. First, POI type tran-
sitions is extracted from raw trajectory data. To solve the
feature representation problem, the POI type transitions is
then put in a preprocessing layer and the layer outputs a
fixed length representation for each individual’s unbiased
living habit. Next, a feature extraction layer based on repre-
sentation learning produces vector representation for each
person’s living habit, which preserves both semantic and
temporal information in the same space so that similarity
between user habits can be easily determined. Therefore, the
granularity selection and distance measuring challenges are
resolved. Finally, clustering analysis is made on living habit
vectors (along with other user-specified features from trajec-
tory data) to output a living habit group. The framework of
our system is shown in Fig. 1.
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4 EMBEDDING SEMANTICS IN TRAJECTORIES

4.1 Preliminary
To better represent semantic difference in people’s living
habits, we first utilize the lowest level POI type represen-
tation. Based on it, we define a habit record Hr as follows.
Definition 1. A habit record Hr records a person’s habit

at a specific timestamp, in the format of (p, t), where
p represents a POI type, and t represents a specific
timestamp, meaning an individual appears in POI type
p at timestamp t.

Based on the above definition for habit record, we further
define a person’s raw habit trace, denoted by Htr .
Definition 2. A person’s raw habit trace Htr is a relation

containing all habit records left by a specific person in the
dataset, in the format of (ui, Hr1, Hr2, ...,Hrn), where
ui represents the ID of the individual, Hrj represents the
jth habit record of ui and n represents the total number
of habit records of ui in the dataset.

For different users, the total number of habit records n is
most likely to be different. As mentioned earlier, trajectory
data recorded by mobile devices are often biased in time and
of varying length. Furthermore, POI information are usually
quite sparse in trajectory data. To effectively represent a
person’s typical living pattern for later analysis, as well as
to filter out redundant information, we therefore carry out
a preprocessing step on the raw habit trace Htr , which is
motivated by the following two observations.

• Individual mobility follows a strong periodicity pat-
tern and is therefore highly predictable, i.e., people
tend to be in similar places at similar time [39].

• Most of us have quite different mobility trajectories
on weekdays and weekends.

In the preprocessing, we compress the irregular raw
habit trace Htr for a person into two fixed-length POI
transition traces: we divide a day into m equal-length time
slices (e.g. 30 minutes) for both weekday and weekend and
then aggregate the person’s raw habit trace Htr on those
time slices, which solves the data sparsity problem. To best
represent the person’s living pattern, we select the most
frequent POI type the person visits in each time slices as his
typical habit during that time slice, and have the following
definition for signature habit trace Hs and habit unit hp

j .
Definition 3. Individual’s signature habit trace Hs is

a feature representing a person’s typical POI type
he/she visits at a specific time slice, in the format of
(ui, p1, p2, ..., pm), where ui represents the ID of the
person, pj is ui’s most likely POI type to visit during the
jth time slice on weekday/weekend and m represents
the total number of time slices.

Definition 4. Habit unit hp
j represents a basic unit in POI

type - time slice two dimensional space, meaning a visit
to POI type p at the jth time slice.

Definition 5. A person’s weekday/weekend signature habit
unit transition Hu is a feature representing a person’s
typical POI type he/she visits at a specific time slice, in
the format of (ui, h

p1

1 , hp2

2 , ..., hpm
m ), where ui represents

the ID of the person, hpj

j is ui’s most likely state of habit

unit during the jth time slice on weekday/weekend, and
m represents the total number of time slices.

4.2 Representation Learning on Living Habits
Although we have obtained fixed-length signature habit
trace He to represent the typical living pattern of each user
in the dataset on both weekdays and weekends, this feature
is not expressive enough for analysis yet. First, it fails to
capture the similarity between different types of POIs such
as Beijing Style and Shanghai Style restaurant, which is a
frequent problem under the finest POI labels. Second, a
metric to compare different users’ signature habit trace com-
bining semantic and temporal factor, is still hard to define.
Therefore, we propose a representation learning method
inspired by word2vec to embed semantics and temporal
factors of users’ signature habit trace in the same space.
User habit similarity can therefore be easily determined by
classical distance/similarity metrics.

Representation learning, as a growing interest and em-
phasis on unsupervised learning, aims at transforming com-
plicated, high-dimensional and often redundant real-world
data into low-dimensional data while preserving informa-
tion embedded in the raw data [33].

Word2vec [34], takes advantage of a three-layer neuron
network to learn input corpus. It finds a fixed-length low-
dimensional representation (often by the hundred assigned
by users) for each word. Word representations are learnt
in a way such that words sharing common contexts in the
corpus are located close to each other in the embedding
space, thus word similarity can be easily determined by
cosine similarity. Experiments show that word2vec is both
effective and efficient in learning word-level semantics.

As in [23], [24], we have discovered a strong similarity
between natural language and signature habit uniter transi-
tion Hu.

Firstly, natural language and signature habit unit transi-
tion can both be viewd as time-dependent series. For each
word in the sentence, there can be multiple choices from the
dictionary regardless of context. Similarly, there are multiple
choices of habit unit for each element in the signature habit
unit transition.

Secondly, both natural language and signature habit unit
transition can be approximated by context. In many cases, if
given context, we are able to predict nearby words without
much trouble. Likewise, a human living pattern has some
typical transition modes, which are reflected in POI type
transition mode in signature habit unit transition.

Thirdly, large scale of data are available for both natural
language and signature habit unit transition to learn their
characteristics.

Lastly, the frequency distribution of habit unit is very
similar to word frequency distribution in natural language.
A typical distribution of habit unit is shown in Fig. 2
(observed in our dataset utilized in experiment), which
approximately follows Zipf Law, the governing law in word
frequency distribution [40].

Therefore, we draw an analogy between learning repre-
sentation for signature habit trace and word embedding, as
shown in Table 1. Inspired by the idea of word2vec, we are
motivated to propose an algorithm to learn an individual’s
habits from the trajectory, with the name of habit2vec.
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TABLE 1
Analogy from habit trace to natural language

Habit unit (a visit to a POI type during a time slice) −→ word
Habit unit transition mode −→ grammar rules/fixed collocation

an individual’s signature habit unit transition −→ sentence
people’s signature habit unit transitions −→ corpus

Fig. 2. Statistics of habit unit satisfies Zipf Law.

4.3 Methodology
The key idea of habit2vec is to embed a user’s current
visit to a POI type target during a time slice (current habit
unit hpj

j ) based on its context. We first acquire embedding
vectors for all habit units. Then, we take mean of all habit
units appearing in a user’s signature habit unit transition as
this user’s living habit embedding vector.

The model requires two user-specified hyper parame-
ters, dim and w. We define hyper parameter dim as the
expected length of embedding vectors (same for habit unit
embedding vector and user living habit embedding vector).
We define another hyper parameter window size w so as
to define the context of habit unit appearing in a user’s
trace. Here we make the assumption that habit units the
user appears farther than w time slices won’t have direct
influence on the user’s current habit unit state, and exclude
them from the context.
Definition 6. Suppose person ui is of habit hp

j at time slice
j, context C(hp

j ) represents all habit units ui visits in
nearby time slices of j. With a user-specified window
size w, C(hp

j ) contains habit units person ui visits from
time slice (j − w) to (j + w) (time slice j excluded). The
habit unit state hp

j at the jth time slice is called target.

Note that we need to pay special attention to the bound-
ary. Instead of treating the habit unit transition as a line,
which neglects the dependency between time slices right
before and after midnight, we treat each user’s habit unit
transition as circle. The context of a boundary target is
shown as an example in Fig. 3. In this case, window size
is assigned 3, and the context of habit unit for this user at
11:00 pm not only includes habit unit at 9:30pm, 10:00pm,
10:30pm and 11:30pm, but also takes into account those
‘very first’ habit units at midnight and 0:30 am.

By sequentially identifying each habit unit in each user’s
habit unit transitions as a target and sliding the window
across the user’s habit unit transitions to get the target’s
context, we get a list of (target, context) training pairs
and put them into a three-layer neural network model
CBOW (Continuous Bag-of-Words) [35] to learn the habit
unit embedding vector. All habit unit embedding vectors are
initialized as random dim-dimension vectors. The objective
of the neural network is to adjust and find the optimal
weights of neuron and habit unit vectors at the output
layer such that the possibility of target’s appearance is
maximized when given context.

The architecture of the CBOW model is shown in Fig. 4,
where N is the number of habit units in the dataset. Denote
the vector representation of habit unit hp

j as w(hp
j ). When

training (targeti, contexti), the neural network takes all
one-hot key representations (the way to represent categori-
cal data where only one label bit is ’1’ while all other bits
are ’0’) of contexti as input and uses an embedding vector
matrix acquired in previous training steps to transform one-
hot key representation of contexti to vector representation{
w(l), l ∈ C(hp

j )
}

, as shown in the input layer of Fig. 4.
Then a second layer sums up all vector representations of
contexti and get the output vector

Φ(C(hp
j )) =

∑
l∈C(hp

j )
w(l),

as shown in the projection layer of Fig. 4 . The third layer
transforms vector back into N dimension at the output and
then predicts the possibility of targeti given contexti using
softmax function(shown in the output layer of Fig. 4). More
formally, the posterior probability of targeti given contexti
is calculated as follows,

p(hp
j |C(hp

j )) = ew(hp
j )·Φ(C(hp

j ))/
∑

h∈H
ew(h)·Φ(C(h)),

where H is the set of all habit units appearing in the dataset.
Finally, the training objective of habit2vec is to maximize the
average log probability

1

|H|
∑

h∈H
log p(h|C(h)),

Using an optimization method such as gradient descent, the
weights of the neuron and embedding vector representa-
tion are adjusted accordingly. Techniques such as negative
sampling [34] can help speed up the training process. The
complexity of CBOW training process is log-linear.

After training with a large enough dataset, the weights
of neurons and representation for embedding vectors con-
verge. We therefore obtain embedding vectors for all habit
units.

4.4 Clustering Method

After the habit2vec representation learning procedure, we
obtain the vector representations for the living habit of
each user. Since the living habit has been embedded in a
single space, we can use a classical clustering method, such
as K-means and density-based method, to cluster similar
living habits. People who visit similar POI types at similar
time slices will be under the same cluster. Apart from the
POI type transition information we use in the habit2vec
process, there is usually other trajectory information from
the raw dataset, such as GPS information and a user profile.
Through user-specified features and a distance/similarity
metric, potentially we can get finer living habit clusters
with constraints, such as “find clusters of people who have
similar POI transition patterns and travel similar distance
from home to work”.
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Fig. 3. Learning context through sliding window.
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Fig. 4. Architecture of CBOW neural network.

5 EXPERIMENTS

Now, based on a large-scale real world spatial-temporal
dataset, we implement our proposed habit2vec system to
detect human living habits and further cluster them into
different groups. We show that habit2vec is capable of cap-
turing semantics in user trajectory, recognizing meaningful
living patterns in population, and significantly improve
performance over baseline methods.

5.1 Data Description
Our dataset is collected by Tencent, one of the largest social
network service providers in China. Its service covers the
majority of Chinese citizens with over 0.89 billion monthly
active users. Thanks to the wide coverage, users recorded by
our dataset can be seen as a good representative of Chinese
citizens. We select the data to focus on the largest metropolis
Beijing, which is ideal for studying metropolis-level living
habits of human beings.

The obtained spatial-temporal dataset is recorded when-
ever the users make requests on localization service in
different platforms of the same service provider, such as
location sharing, location check-ins, location-based social
network, etc. GPS information at the timestamp is therefore
recorded by localization modules. As the localization is
achieved through both GPS and network-based approaches,
the obtained location information is of fine-grained spatial
granularity. In addition to GPS data, POI information, such
as the name of a restaurant, or a specific address, is often
recorded at the same time, thus adding semantics to spatial
temporal information. Tencent provides a POI dictionary,
which maps each POI to POI types of three levels. The
number of POI types of the three level is 17, 189 and 405,
respectively. For the first-level POI type, the categorization
is coarse and covers major categories such as life service,
company, real estate, etc, while the second and third-level
POI type are much more fine-grained (e.g., distinguish

different kinds of restaurants). Some examples of Tencent
POI dictionary are listed in Table 2. One key issue with
this provided POI dictionary, however, is that many POI
categorization are not independent, even for the first level.
For instance, office building belongs to the first-level POI
type ‘real estate’, but is closely related to first-level POI
type ‘company’, thus leads to difficulty in living pattern
recognition. As we will show later, our proposed habit2vec
addresses this challenge with good results.

In the experiment, we implement our system on 123,803
randomly sampled users in Beijing, whose records range
from September 17, 2016 to October 31, 2016. All user in-
formation in the dataset have been anonymized for privacy
concerns. A detailed description of the dataset is summa-
rized in Table 3.

5.2 Data preprocessing, habit2vec and clustering
Based on the POI information from the raw dataset, we use
the third-level POI dictionary to convert POI transitions into
finest POI type transitions. Then we discretize a day into 48
equal-length time slices (30 minutes every time slice) and
aggregate the POI type transitions into a weekday and a
weekend day. The parameter is set as 48 as it provides finest
granularity and explainability without suffering from data
sparsity. We mark time slices missing POI information as
“missing” type in the dataset. In the acquired POI type
transition trace, 5.2% of the time slices in the aggregated
weekday and 8.1% of the time slices in the aggregated
weekend day is marked missing.

As people follow quite different living patterns on week-
day and weekend, which in turn affects the POI transitions
and the context of each habit unit, we separately adopt
habit2vec representation learning on weekday and weekend
data. After obtaining the vector representation for each habit
unit, we take the mean of all habit units of a user as the vec-
tor representation for his/her living habit, and then adopt
K-means clustering algorithm (with cosine similarity metric)
separately on weekday and weekend trace to find groups
of similar living habits on weekday/weekend. Following
practices in word2vec [34], [35], We set the representation
vector length dim as 80, and the window size w as 3 (1.5
hours). As revealed by previous works, a larger dim enables
a better preservation of original word semantics, yet the
gain is limited when dim is sufficiently large. For window
size w, if the value is too small, correlation between habit
units will not be properly captured; on the other hand, a too
large window size will lead to over estimation of correlation.
In the experiment, we carefully tuned these parameters so
that optimal performance is achieved in measuring habit
unit similarity and identifying living patterns. Finally, we
choose the optimal number of cluster K through elbow
method [8]. By increasing K from 2 to 30, and calculating
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TABLE 2
Example of Tencent POI dictionary

First-level POI Restaurant, company, real estate, service, entertainment, school, commercial, infrastructure
Second-level POI Chinese restaurant, factory, residence, office building, post office, university, bank, shop, transportation
Third-level POI Beijing restaurant, factory, villa, office building, industrial park, post office, university, bank, supermarket, market, airport

TABLE 3
Data Summary

Coverage Beijing
Record duration Sep 17-Oct 31, 2016
Number of users 123,803

Number of unique POIs on weekdays 63,966
Number of unique POIs on weekends 61,827

Number of first-level POI type 17
Number of second-level POI type 189
Number of third-level POI type 405

the sum of error from user samples to the cluster center, we
choose K at elbow point where the sum of error does not
drop significantly compared to other points as the number
of clusters. In this way, we determine the number of habit
clusters for a weekday as 13 and the number of habit clusters
for a weekend as 12.

5.3 Results Analysis
5.3.1 Habit Unit Embedding
One main objective to adopt habit2vec is to measure the
semantic similarity between POI types under the variation
of time. We first take a specific POI type as an example
to check the effect of habit2vec in distinguishing semantic
difference. For instance, first-levl POI type restaurant is sub-
divisioned into different styles as a Beijing style restaurant,
Hunan (a Chinese province) style restaurant, Pizza, etc. We
measure the cosine similarity (value between -1 and 1 where
the greater the value, the closer is the relationship between
the two features) betweeen a Beijing style restaurant and a
Hunan style restaurant at 12 noon. The similarity is 0.86,
which implies a great similarity. On the other hand, the
similarity between a Beijing style restaurant and Pizza (both
are restaurants, but they have customers with different
purposes, where Pizza is fast food while a Beijing style
restaurant is much more formal) at 12 noon is 0.34 while the
similarity between a Beijing style restaurant and a factory
(they have no relationship) at 12 noon is -0.45. Habit2vec
also measures temporal difference. The similarity between
a residence at 1am and a residence at 11:30pm (both late
night) on a weekday is 0.79, while the similarity between a
residence at 1am (late night) and 8am (morning rush hour)
on a weekday is 0.22.

We further test habit unit vectors on a global scale.
We select 5 representative major POI types from the first-
level and second-level POI dictionary: residence, university,
commercial, restaurant and entertainment and check their
similarity at different time slices on weekday. For top-
level POI type such as restaurant and entertainment (which
includes low-level POI types as cinema, club, etc.), we take
the mean of all their subdivision POI types at the same time
slice as its representation. The cosine similarity between the
five POI types at 3am, 10am and 8pm is shown in Table 4.
Each non-diagonal cell in the table has three components,
referring to the similarity between the two POI type at 3am,
10am and 8pm. For instance, the element at the second row
third column (-0.08,0.29,-0.25) means the similarity between

residence and commercial district is -0.08 at 3am, 0.29 at
10am and -0.25 at 8pm. From Table 4, we observe that the
result of habit2vec is in accordance with our expectation.
The five major POI types have quite clear semantic differ-
ence, which is reflected in the fact that most elements in the
table are much less than 1.

On the other hand, habit2vec has the ability to distin-
guish semantic variations of POI type at different time.
For instance, the similarity between restaurant and enter-
tainment is 0.29 at 3am, -0.1 at 10am while 0.51 at 8pm.
This is consistent with our intuition: being in restaurant
could simply mean filling the stomach, hanging in out with
friends or doing a job (chef) while being in entertainment
zone is closely related to entertaining with friends. If a
person goes to a restaurant at night, he/she is likely to meet
with friend and therefore similar in the purpose of going
to entertainment zones. If a person appears in a restaurant
10am in the morning, either because he/she is hungry or the
person works in the restaurant, which is quite different from
being in entertainment zones. The semantic difference of
POIs at different times, is therefore successfully embedded
in our habit2vec approach.

5.3.2 Label User Habit Clusters
We further check the performance of user habit vectors
obtained from habit2vec. We implement K-means clustering
method separately on weekday and weekend user living
habit representation and obtain 13 weekday habit clusters
(weekday living patterns) and 12 weekend habit clusters
(weekend living patterns). Then, we determine the seman-
tics, or the label of each habit cluster based on 2 criteria.

• The statistics of POI types in the cluster;
• The living habit closest to the cluster center.

For instance, we determine the label of weekday cluster
#2 and cluster #5 through the following way. We first make
a statistics of the POI type in cluster #2 and #5. We find
that POI type commercial building accounts for 36.7%, while
residence accounts for 52.8% of all POI types appearing in
cluster #2. In the meantime, POI type commercial building
accounts for 25.3%, while residence accounts for 45.3% of
all POI types appearing in cluster #5. As we are not able to
tell the difference between semantics of the two clusters, we
move on using the cluster center temporal information. We
find out that the living habit of user whose habit vector
is closest to the vector of the cluster #2 center stays in
residence at night and goes to commercial building in the
day (Fig. 5(a)), while user closest to cluster #5 is on the
contrary (Fig. 5(c)). Thus, we label them differently. This ex-
ample shows that habit2vec clustering is good at measuring
difference in time scheduling.

In this way, we label semantics of all weekday and
weekend cluster. The semantics, possible identity as well as
the population proportion of the 13 weekday living habit
clusters are summarized in Table 5 while the semantics
and the population proportion of the 12 weekend living
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TABLE 4
Similarity Between 5 Major POI types at 3am, 10am and 8pm on Weekday

residence university commercial restaurant entertainment
residence 1 (-0.03,0.12,0.21) (-0.08,0.29,-0.25) (-0.01,-0.06,0.1) (-0.41,0.11,0.21)
university (-0.03,0.12,0.21) 1 (0.23,0.32,-0.16) (0.11,0.02,0.12) (0.05,0.04,0.12)

commercial (-0.08,0.29,-0.25) (0.23,0.32,-0.16) 1 (0.33,-0.08,0.11) (0.29,0.06,0.10)
restaurant (-0.01,-0.06,0.1) (0.11,0.02,0.12) (0.33,-0.08,0.11) 1 (0.29,-0.1,0.51)

entertainment (-0.41,0.11,0.21) (0.05,0.04,0.12) (0.29,0.06,0.10) (0.29,-0.1,0.51) 1

(a) Weekday habit #2

 

(b) Weekday habit #3

 

(c) Weekday habit #5

 

(d) Weekday habit #9

 

(e) Weekend habit #1

 

(f) Weekend habit #2

 

(g) Weekend habit #6

 

(h) Weekend habit #11

Fig. 5. Four weekday and four weekend living patterns detected by habit2vec.

habit clusters are summarized in Table 6. The cluster results
show that habit2vec not only captures distinctions in users’
visits to different POI types, but also distinguishes schedule
difference.

Note that we are using cluster center to represent typical
living habit in the city, which turn out to be simple enough
to be represented by one or two POI types. However, not all
users in the a living habit cluster are similar to cluster center
in terms of POI type labels. For instance, in weekday habit
cluster #1, we observe people who spend most of their day
time at auto repair, auto service, local market, pharmacies,
etc. (different from habit center POI type “shops”), but
they don’t show up in other habit clusters. They belong to
cluster #1 as the semantics of working in these POI types
during the day are much more similar to working in shops
than working elsewhere (other habit clusters). In addition,
users in a living habit cluster generally have variations
from cluster center, e.g. different users may go to different
type of restaurant at different time slices. Despite the vari-
ations, their general living habit fit the pattern defined by
cluster center. Therefore, habit2vec is capable of capturing
fine-grained semantic similarity dynamically in user habit
without prior knowledge, compared with previous works
which directly consider static POI type labels (often involve
manually grouping POI labels).

It is worth mentioning, however, due to lack of infor-
mation and the unsupervised nature of habit2vec, some
recognized living patterns may represent people of different
identities. For instance, weekday habit cluster #3 represents
people who stay in hospital the whole day, and they could
be doctors, nurses or patients. Also, habit2vec is not able to
distinguish fine-grained location semantics in some cases,
e.g., dormitories and lecture halls in universities, since they
have the same POI label ‘university’. Nevertheless, we ar-
gue that habit2vec, as many other successful data mining
techniques, nicely completes ’search and filter’, ’read and
extract’ and ’schematize’, and helps establish reasonable
hypotheses in the sensemaking process [41] with minimal
manual effort. To further support or disconfirm hypotheses
generated by habit2vec on user identities, more information
and domain knowledge is needed.

5.3.3 Spatial Analysis on User Habit Cluster

We visualize the spatial distribution of four interesting habit
clusters for weekday (Fig. 6), and four habit clusters for
weekend (Fig. 7) at midnight (2am) and in the morning
(10:30am). We further evaluate the clustering performance
of habit2vec, and obtain the following featured clusters.

• Weekday cluster #2 represents people who stay in
residence at night and stay in commercial building
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TABLE 5
Semantics, Possible Identity and Population Proportion of 13 weekday

living habit clusters.

ID Semantics Possible Identity %
#1 stay in residence at night, stay

in shops for the day
shop owner, shop
assistant

5.7%

#2 stay in residence at night, stay
in commercial building for the
day

white collar 7.1%

#3 stay in hospital the whole day doctor, nurse, pa-
tient

1.0%

#4 stay in industrial zone whole
day

engineer, laborer 4.1%

#5 stay in commercial building at
night, in residence for the day

white collar 7.3%

#6 stay in residence the whole day retired, freelance 28.0%
#7 POI type missing - 5.9%
#8 stay in residence most of the

day, go to commercial buildings
briefly

senior white collar 4.7%

#9 stay in university the whole day college student 9.8%
#10 stay in residence most of the

day, go to shops briefly in the
day

retired, freelance 14.1%

#11 irregular life, skip from one POI
type to another

people leading ir-
regular life

2.0%

#12 stay in suburb residence most of
the day, go to market in the day

local business
owner

2.9%

#13 stay in residence at night, go to
schools in the day

teacher, student 7.4%

TABLE 6
Semantics and Population Proportion of 12 weekend living habit

clusters.

ID Semantics %
#1 stay in residence the whole day 34.0%
#2 stay in university the whole day 7.1%
#3 stay in residence at night, go shopping in the day 6.2%
#4 stay in residence at night, go to gym in the day 1.8%
#5 stay in university most of the day, go shopping briefly

in the day
6.8%

#6 stay in residence at night, go to scenic spot in the day 3.9%
#7 stay in residence at night, go to university, shops in

the day
8.8%

#8 stay in industrial zone the whole day 3.2%
#9 stay in residence most of the day, go shopping in the

evening
8.5%

#10 POI type missing 7.8%
#11 stay in residence most of the day, stay in entertain-

ment zones in the evening
7.3%

#12 stay in residence at night, go shopping and gym in
the day

4.6%

for the day. The spatial distribution of the cluster at
midnight spreads across the city. While in the morn-
ing working hours, users of this cluster aggregates in
commercial center as CBD and Zhongguancun.

• Weekday cluster #3 represents people who stay in
hospital for the entire day. The spatial distribution
of the cluster at midnight looks almost the same
as the cluster in the morning, and the distribution
resembles the distribution of Beijing’s hospitals.

• Weekday cluster #5 represents people staying in com-
mercial building at night and going back to residence
in the day. The spatial distribution of the cluster is the
opposite of Weekday cluster #2, despite this group

concentrates more in suburban commercial center as
Huoyin.

• Weekday cluster #9 represents people staying in uni-
versity for the entire day. The spatial distribution of
the cluster is the same as university distribution in
Beijing.

• Weekend cluster #1 represents people staying in res-
idence for the entire day. This habit group covers the
whole city.

• Weekend cluster #2 represents people staying in uni-
versity for the entire day. The spatial distribution of
the cluster is quite similar to weekday cluster #9.

• Weekend cluster #6 represents people staying in res-
idence at night who go to scenic spot in the day.
The spatial distribution of the cluster in the day
highlights the scenic spots in suburb Beijing.

• Weekend cluster #11 represents people staying in
residence in the day and going out to entertainment
district at night. The spatial distribution of the clus-
ter is similar to the spatial distribution of Beijing’s
entertainment district.

From the above analysis, we come to the conclusion that
the spatial distribution of habit clusters is in conformity with
the habit labels we assigned previously.

5.3.4 Visualization of Habit Cluster Structure
We also visualize the low-dimensional structure of weekday
and weekend habit clusters. We adopt the widely used
high-dimensional data visualization technique, t-SNE [42],
to project user habit vector obtained from habit2vec on
3D space. Fig. 8(a) and Fig. 8(b) show the distribution of
weekday user habit vector and weekend user habit vector
respectively, where each point in the 3D space represents
the weekday/weekend living habit of a user and points
with the same color stand for users of the same detected
living pattern. As demonstrated by Fig. 8, users of the same
weekday/weekend living pattern aggregate while users of
different living patterns are disperse. Therefore, each habit
cluster can be represented by its centroid, which proves the
effectiveness of habit2vec in representing user living habit
and finding distinct living patterns in population.

5.3.5 Relationship between Weekday and Weekend
We further evaluate the performance of habit2vec by study-
ing the relationship between weekday and weekend user
habit clusters. As mentioned earlier, we notice the difference
between weekday and weekend POI transition mode and
therefore separately train weekday and weekend habit unit
vectors. We notice that there is a strong correlation between
weekday cluster #9 (university whole day) and weekend
cluster #2 (university whole day) and cluster #5 (univer-
sity+briefly shopping in the day), where 64% of people in
weekday cluster #9 appears in weekend cluster #2 while
15% of people in weekday cluster #9 appears in weekend
cluster #5. There is also a correlation between weekday
cluster #6 and weekend cluster #1 (both means staying in
residence for the whole day), where 63% of people in cluster
#6 end up in weekend cluster #1. On the other hand, there
is no simple one-one or one-two matching between other
weekday and weekend habit clusters, indicating that other
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(a) Spatial distribution of week-
day user habit cluster #2 at mid-
night

Zhongguancun 

CBD 

Beijing Financial 
Street 

(b) Spatial distribution of week-
day user habit cluster #2 in morn-
ing working hours

Hospitals 

(c) Spatial distribution of week-
day user habit cluster #3 at mid-
night

 

Hospitals 

(d) Spatial distribution of week-
day user habit cluster #3 in morn-
ing working hours

 

Huilongguan 
Huoying 

Shunyi 

CBD 

(e) Spatial distribution of week-
day user habit cluster #5 at mid-
night

(f) Spatial distribution of weekday
user habit cluster #5 in morning
working hours

Universities 

(g) Spatial distribution of week-
day user habit cluster #9 at mid-
night

 

Universities 

(h) Spatial distribution of week-
day user habit cluster #9 in morn-
ing working hours

Fig. 6. Spatial distribution of four weekday living habit user clusters at
midnight and in morning working hours.

groups have more flexibility in living style. The result of
weekday and weekend living pattern clusters is shown in
Table 7. Each element in the table refers to the percentage
of people in a weekday habit cluster who belongs to a
weekend habit cluster. For instance, element 0.1% in the
third row third column in the table means that 0.1% people
in weekday cluster #6 belongs to weekday cluster #2. In
summary, the results of weekday-weekend habit cluster

(a) Spatial distribution of week-
end user habit cluster #1 at mid-
night

(b) Spatial distribution of week-
end user habit cluster #1 in the
morning

 

Universities 

(c) Spatial distribution of week-
end user habit cluster #2 at mid-
night

 

Universities 

(d) Spatial distribution of week-
end user habit cluster #2 in the
morning

(e) Spatial distribution of week-
end user habit cluster #6 at mid-
night

 

798 Art Zone 

Suburban 
Parks 

(f) Spatial distribution of weekend
user habit cluster #6 in the morn-
ing

 

CBD 

Zhongguancun 

(g) Spatial distribution of week-
end user habit cluster #11 at mid-
night

(h) Spatial distribution of week-
end user habit cluster #11 in the
morning

Fig. 7. Spatial distribution of four weekend living habit user clusters at
midnight and in the morning.

relationship lives up to our expectation and highlights the
complex composition of users’ weekday and weekend living
patterns.

5.3.6 Evaluation via Ground Truth

Finally, we evaluate the living patterns recognized through
habit2vec via ground truth data.
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Fig. 8. Visualization of 3D structure of weekday and weekend habit
clusters.

TABLE 7
Relationship Between Weekday and Weekend Living Habit Clusters.

weekday
weekend #1 #2 #5 #9

#2 31.2% 1.0% 0.5% 10.2%
#6 62.6% 0.1% 0.3% 7.3%
#8 28.9% 0.2% 1.1% 6.7%
#9 4.2% 64.2% 14.8% 1.2%

First, we randomly select 200 users from our dataset
and ask 20 volunteers (8 female and 12 male) to label the
most likely living patterns of those users by viewing their
weekday signature habit unit transition (the 48-length POI
type series, whose components represent the most likely
POI type the user visits during a specific 30-minute time
slice on weekdays). Of the 200 users, 189 users’ identities
labelled by volunteers match the results recognized through
habit2vec, with an accuracy of 94.5%. This result further
verifies that habit2vec is capable of recognizing meaningful
living patterns.

Then, we compare the performance of habit2vec over
baseline algorithms. To the best of our knowledge, there
is one existing work [25] aiming at approaching a similar
living pattern recognition problem, which proposes a PCA-
based method to extract behavior patterns for 100 people
with 5 location semantics (’work’, ’home’, ’no signal’, ’else’
and ’off’). However, the method requires constructing a
user-feature matrix, which is of high space complexity. In
fact, running the method on our dataset is far beyond
the capacity of normal machine’s memory. We therefore
leverage the following two baseline methods as comparison
instead:

Histogram: For each user, we count the frequency the
user visits each type of POI in his/her signature habit trace,
and form user POI type visit histogram feature to represent
his/her habit. Then we perform K-means clustering on this
histogram feature. We set the clustering number k as 13
to be the same as the number of weekday living patterns
recognized by habit2vec.

LDA: Latent Dirchlet Allocation (LDA) [43] is a classical
unsupervised method in natural language processing to
extract semantic features for documents, which has been
recently widely adopted in spatial temporal data mining
and user profiling [2], [26]. We first use LDA on user POI
transition trace, extract latent feature of each user and
perform K-means clustering on the latent feature. We set
the clustering number k as 13 to be the same as the number
of weekday living patterns recognized by habit2vec, and set

the number of latent feature as 12, which has been carefully
tuned to obtain optimal performance.

As there are no available data on real user living pattern
categorization, we adopt user self-reported occupation as
ground truth so as to approximate his/her weekday liv-
ing pattern. We acquired self-reported occupations of 127
anonymized users recorded in our dataset from Tencent,
with 7 different types of occupation. We randomly selected
users of different characteristics so as to ensure that the
ground truth data is representative to the greatest extent
possible. The distribution of different types of occupations
of the ground truth is demonstrated in Fig. 9(a).

We use normalized mutual information (NMI), a popular
performance analysis metric in clustering analysis [44], to
measure the performance of weekday living pattern recog-
nition. The range of NMI is between 0 and 1, and a greater
NMI value indicates a better match between identified living
patterns and the ground truth user occupation types, e.g., if
NMI reaches 1, it means that users within each identified
living pattern cluster has the same type of occupation, and
that all users with the same type of occupation fall into
the same living pattern cluster. Denote Yk as the set of
users with living pattern k, Zj as the set of users whose
occupation type is j, and M as the total number of users,
NMI is defined as follows,

I(Y,Z) =
∑
k

∑
j

|Yk ∩ Zj |
M

log
M |Yk ∩ Zj |
|Yk| ∩ |Zj |

,

H(∗) = −
∑
Xi∈∗

Xi

M
log

Xi

M
,

NMI(Y,Z) =
2× I(Y, Z)

H(Y ) + H(Z)
,

where I(Y,Z) is mutual information between identified
patterns and ground truth occupation categories while H(∗)
is the entropy.

We illustrate the performance of random assignment,
histogram feature baseline, LDA feature baseline and
habit2vec in Fig. 9. We observe that habit2vec outperforms
histogram and LDA feature by a large margin, with 100%
and 47.4% performance gain, respectively, which indicates
that habit2vec can identify user living pattern much better
than baseline approaches. We attribute this performance
gain to the fact that habit2vec can capture the temporal and
semantic correlation between different type of POIs. Note
that in the current evaluation process, we use the plug-
in estimator for probability distribution estimation when
calculating entropy, which may subject to bias and errors
given the size of ground truth data. We anticipate more
evaluation work on habit2vec when better ground truth
data becomes available.

6 CONCLUSIONS

In this paper, we use semantic information embedded in
trajectories to identify typical living patterns in a popula-
tion. We propose a representation learning method called
habit2vec to mine the users’ signature living habit to embed
semantics and time in the same space. We evaluate the
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(a) Occupation distribution of self-reported ground truth data

(b) habit2vec vs. baselines

Fig. 9. Performance comparison of habit2vec over baseline methods.

effectiveness of our proposed system based on a real-world
dataset with 123,803 users, and successfully discover 13
and 12 meaningful weekday and weekedn living patterns
respectively. The experiment shows that habit2vec is capable
of preserving both semantics and time information in users’
living habit. In the future, we plan to predict the career and
social-economic status based on living habits recognized by
our system.
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