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Can health conditions be inferred from an individual’s mobility pattern? Existing research has discussed the relationship
between individual physical activity/mobility and well-being, yet no systematic study has been done to investigate the
predictability of fine-grained health conditions from mobility, largely due to the unavailability of data and unsatisfactory
modelling techniques. Here, we present a large-scale longitudinal study, where we collect the health conditions of 747
individuals who visit a hospital and tracked their mobility for 2 months in Beijing, China. To facilitate fine-grained individual
health condition sensing, we propose HealthWalks, an interpretable machine learning model that takes user location traces,
the associated points of interest, and user social demographics as input, at the core of which a Deterministic Finite Automaton
(DFA) model is proposed to auto-generate explainable features to capture useful signals. We evaluate the effectiveness of
our proposed model, which achieves 40.29% in micro-F1 and 31.63% in Macro-F1 for the 8-class disease category prediction,
and outperforms the best baseline by 22.84% in Micro-F1 and 31.79% in Macro-F1. In addition, deeper analysis based on
the SHapley Additive exPlanations (SHAP) showcases that HealthWalks can derive meaningful insights with regard to the
correlation between mobility and health conditions, which provide important research insights and design implications for
mobile sensing and health informatics.
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1 INTRODUCTION
Can we infer an individual’s health condition from his/her mobility patterns? There has been a long line of
research exploring the correlation between physical activity and human well-being [1]. As one of the most
ubiquitous forms of physical activity, mobility has been shown to be closely linked to user well-being [2, 3].
Meanwhile, with the popularization of the mobile phones and wearable devices, individual mobility trace data
have become easily accessible and have been widely used to profile user attributes, e.g. gender, age, achieving
considerable accuracy [4, 5]. A natural and intuitive extension would be to investigate whether individual mobility
traces, can be leveraged to sense fine-grained health conditions, i.e. potential health risks the individual is prone
to, of the users.

Traditional health profiling methods mainly rely on leveraging physical examination and questionnaire-based
methods to give a coarse grained classification [6, 7]. However, existing approaches require slow and manual
interactions between patients and care providers, which cost a lot of time and money[6, 7]. Thus, the effectiveness
of the system for sensing potential health risks is becoming increasingly important, since an efficient and instant
system can provide great convenience in patient care as well as controlling the medical costs. To achieve this
vision, recent years have seen a surge of research interest to leverage ubiquitous computing techniques, e.g. sleep
logs are collected from smart bands and user surveys for user health sensing [8], and the relapse of psychotic
disorder has been detected in [9] by patient-generated and patient-contributed digital data from Facebook, yet
they quite often require specially designed sensors or frequent feedback from users. Thus if health sensing can
be strengthened through mining user mobility signals, the cost of sensing can be even lowered as mobility data
are one of the most easily accessible data sources for an individual.

Despite its potential impact, little work has been done on profiling users’ fine-grained health condition using
mobility data. The most relevant work [10] intuitively defined several mobility metrics to infer individual mood
disorder, and [11] utilized the points of interest (POI) data to predict the evolution of chronic disease at the region
level. Yet none of the literature has addressed the problem of using mobility trace to sense disease category level
individual health condition. The key obstacle not only lies in the lack of a novel dataset, but also the difficulty
of modelling to capture useful signals from mobility traces that can be used to infer health risks at a more
fine-grained level.
Present Work. Here, we launch a longitudinal study where we collect and explore a novel dataset, which

includes mobility traces of 747 patients and the associated medical information. Preliminary analysis confirmed
the characteristic difference in the distribution of classical mobility metrics across different disease categories. To
enable accurate sensing of individual health conditions, we further propose HealthWalks, a machine learning
model that takes user location traces, their associated points of interest, and user demographics as input, at
the core of which a deterministic finite automaton (DFA) model is used to auto-generate a large number of
interpretable features to help capture useful signal.
Furthermore, we present insightful analysis on the interpretability of HealthWalks. Many machine learning

techniques have been utilized in previous work about user profiling based on mobility data, including RNN-based
methods [12, 13], unsupervised clustering [14, 15], and network embedding methods [16, 17]. However, they
are unable to explain the signals that contribute to the prediction captured in their model, neither can they
offer a reasoning procedure for the prediction similar to human experts. Considering that interpretability plays
a vital role in the medical machine learning task, we adopt the latest popular explainable model, the SHapley
Additive exPlanations (SHAP) [18] to construct an explainable system for our model, where the influence of each
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variable on each prediction can be computed by utilizing a game theoretic approach. Within this technique, some
interesting insight has been extracted, e.g., the endocrinology group is found most associated with sports and
restaurant POI, the mental and neurology is found to be the most aligned with the workplace-related features,
and the birth group showcases the most inactive mobility pattern. Finally, we present a reasoning procedure to
showcase how our model infers a user's potential health risk through his mobility trace.

To the best of our knowledge, our paper is the �rst to pro�le �ne-grained health condition using individual
mobility traces, which is of great importance to the boosting of e�ectiveness of the existing system for sensing
potential health risks. The major contributions of this work can be summarized as follows:

� We propose a novel question to sense �ne-grained health risks using mobility data. To make this study
possible, we utilize a questionnaire-based method to collect the outpatient information from hospitals in
Beijing. Then, through collaboration with mobile operator, we collect the mobility trace covering two months
from relevant users with their permission.

� We propose a methodHealthWalksbased on a deterministic �nite automaton (DFA) to generate numerous
features which are then selected by regularization method for the �nal classi�cation. We also aggregate the
points of interest (POI) data and demographics to generate features capturing the semantics of the trajectory.

� Then, we conduct empirical experiments on a real world dataset to showcase the signi�cance and robustness
of our model to predict severity and disease category. We demonstrate that our model has achieved up to
40.29% in Micro-F1 and 31.63% in Macro-F1 for the 8-class disease category prediction, which signi�cantly
outperforms the best baseline by 22.84% in Micro-F1 and 31.79% in Macro-F1.

� Finally, we conduct extensive experiments to cast insight on the correlation between mobility patterns and
health conditions. We combine the global feature importance and local explanations to gain a meaningful and
comprehensive interpretation of the health signals re�ected by the mobility trace data. These results bring us
knowledge which is vital to numerous applications, including intelligent medical system for sensing potential
health risks, medical-related apps and even the scheduling for the urban medical resources.

2 BACKGROUND AND RELATED WORK
With the prevalence of mobile devices, there has been a soaring number of applications based on the large-scale
mobility data, including tra�c prediction [19], social relationship inference [16], user pro�ling [ 20], and disease
evolution prediction [21]. In this paper, we concentrate on leveraging the mobility data to predict user's �ne-
grained health conditions. We review the most relevant related work, which can be summarized as three major
perspectives.

2.1 Physical Activity, Mobility and Health
Previous work from biological and medical �elds has studied the relationship between physical activity and health
status. Buchner et al. [1] has proved that physical exercise can improve older people's health considering the
physiological measures of physical �tness. A conceptual framework is proposed [22] to outline how adolescent
physical activity might contribute to adult health. Also, a number of researchers [23, 24] have demonstrated that
regular physical activity of moderate intensity can reduce the risk of numerous chronic diseases and extends
longevity. Blair et al. [25] combine preventive etiologic associations with the therapeutic e�ects of physical
activity on health and disease to assess how much physical activity is required for health. Evidence provided
in [26] demonstrates that even light activities can have health bene�ts.

Physical mobility, as a speci�c instance can also have association with the health condition. Actually, there
has been some related work that has explored the correlation between health condition and human mobility.
Longitudinal analytical techniques have been used in [2] to better understand and identify the relationship
between residential mobility and health. Altho� et al. [27] demonstrated the relationship between mobility and
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obesity rate at the country level. All the background theoretical knowledge mentioned above has strengthened our
motivation to study the health condition using individual's mobility traces, and we hypothesize that individual
human mobility pattern can help predict user health condition at �ne-grained level.

2.2 Health Sensing with Ubiquitous Computing
Unobtrusive sensing and wearable devices monitoring health condition have been discussed in [28, 29]. Sleep
quality is predicted in [8] using sleep logs collected from smart bands and user surveys. The monitoring of bipolar
disorder by means of smartphones are discussed in [30]. The relapse of psychotic disorder has been detected
in [9] by patient-generated and patient-contributed digital data from Facebook. However, the existing approaches
cost a lot of money and time on the wearable devices or requires users to give feedback (i.e., �ll in questionnaire
on a daily basis) to the monitoring devices or related apps, which is unlikely to be put into use on a large scale.
Besides, the previous related work has mainly focused on the detection and prediction of the psychological states
and mental health conditions. In contrast, our work focus on investigating the possibility of using individual
mobility data captured by their smartphones to predict more �ne-grained health conditions, e.g. potential health
risk at disease category level, for each user.

Some work has been done on sensing health using mobility data. The prediction of the chronic disease using
POI check-in data has been studied in [11]. Malaria transmission foci has been identi�ed in [3] using large-scale
human mobility data. User locations and social connections are exploited by [31] to detect the stressful periods.
However, all of these papers sense people's health condition with mobility data by a coarse granularity, either from
region level or at a large population scale. Furthermore, the previous work simply leverage the physical mobility
data or just the POI check-in data, which cannot extract a whole picture of the mobility pattern. Therefore,
in order to narrow the gap existed in previous work, we are dedicated to predicting the �ne-grained health
condition at disease category level, where we combine the physical mobility traces and the points of interest
(POI) information to enhance the semantics of the mobility traces and better represent a comprehensive mobility
pattern linked with health conditions.

2.3 User Profiling with Mobility Data
The availability and proliferation of the large-scale mobility data has aroused extensive studies on exploring
the user pro�ling. Previous work mainly focuses on leveraging the mobility data to infer social relationship
based on the co-location behavior [16, 17], or combined the mobility data with other source of ubiquitous
data, such as app usage and light sensor, to infer user attributes like age and gender [4, 5]. Other work has
investigated the possibility of sensing user living pattern from mobility [32� 34]. Also, studies [35, 36] have found
that important functional locations (i.e., residence and workplace) can be identi�ed by individual trajectory data.
Furthermore, another important related work proposed a temporal pattern based trajectory clustering algorithm,
which e�ectively captured the similarity in time allocation patterns [14]. It showcased the possibility of predicting
the user attributes based on mobility data. However, one key obstacle for inferring the complex user attributes
solely based on mobility data is the di�culty of dissecting the motivations behind mobility transitions, which
prevents the models from capturing the underlying correlation between mobility behavior and user attributes.
Besides, the methods to deal with the mobility data utilized in the previous work are mainly unsupervised
clustering [14, 35, 37], network embedding methods [16, 17] or RNN-based methods [12, 13], which lack decent
interpretability in how a mobility pattern contributes to the inference of the user pro�les.

Di�erent from previous work, our goal is to infer the �ne-grained health condition (i.e., the potential health
risks) based on the mobility records collected by the widely-used smartphones, which has been absent in the
ubiquitous computing area. Also, di�erent from the methods mentioned in the related work, we propose a
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feature-based model together with the state-of-the-art explainable machine learning technique to improve the
performance while preserving �ne-grained interpretability.

3 DATA COLLECTION, PRELIMINARY ANALYSIS AND TASK FORMULATION

3.1 Data Collection
We collect a real-world mobility trace along with user improvement demographics and medical data, which
combine the raw mobility records with the points of interest (POI) data to enrich the semantics of the trajectory.

Table 1. The basic information of the utilized datasets.

City Time Duration Records Users Locations
Beijing, China 1st July � 31st August, 2017 907,345 747 15,509

3.1.1 Mobile Network Data.We collect the dataset jointly from the local mobile operator, China Mobile and
11 hospitals in Beijing, which contains over 7 million mobility records covering 747 outpatient users and 15,509
associated base station locations for two months, i.e., from 1 July. 2017 to 31 August. 2017. It should be noted that
the eleven hospitals we collaborate with are well-known and representative, including 8 general hospitals and 3
specialized hospitals. The details of how we collect the dataset are as follows.

� First, we set digital questionnaires in the collaborated hospitals in Beijing by QR-code, and set several
questions about their outpatient information (i.e., including their gender, age, education level, speci�c
department he or she visits, etc.). It should be noted that we regard the department he or she visits as the
speci�c kind of disease category he or she su�ers. Several measures have been adopted to verify the raw
data. We check the validity by collecting the completion time for each question to verify the quality of the
collected data. Also, we set a trap question (i.e., a question that has a known answer) in the questionnaire
to check the validity of the questionnaire. We accepted 7,759 questionnaires and only pick out 562 validated
users from seven representative disease categories (i.e.,dental, mental, birth, endocrinology, neurology,
orthopedics and cardiology) and 185 healthy people.

� Then, for the validated questionnaires, we ask their permission to join our potential research project and
permit our analysis of the mobility trace. If they are willing to share this kind of private information, then
we can collect the mobility records of them which covers a period of 2 months through close collaboration
with the mobile operator. Speci�cally, the �ne-grained mobility trace records the time stamps and the
connected base stations with longitude and latitude information whenever the mobile users access cellular
network, e.g., sending text messages and making phone calls, consuming mobile data tra�c. The period of
two months ensures the su�cient number of records after the preprocessing procedure in Section 3.1.4.
Furthermore, the mobile operator o�ers us the user attributes, i.e., age, gender and average revenue per
user (ARPU.).

Table 2. The distribution of user demographic in China Mobile dataset.

Demographic Category
Gender male (27.98%), female (72.02%)

Age 0� 30 (21.95%), 30� 40 (35.74%), 40� 60 (35.21%), 60� 99 (7.10%)
Education junior high school (21.02%), senior high school (25.57%), undergraduate (25.97%), postgraduate (27.44%)
Income very low (10.17%), low (18.34%), high (59.71%), very high (11.78%)
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(a) department (b) POI

Fig. 1. The distribution of disease and POI categories of the dataset.

� To further verify the data, we check the consistency of the basic information (i.e., age and gender) from
both hospitals and mobile operator, and we discard non-reliable questionnaires. Furthermore, we adopt
several measures to protect the privacy of this sensitive data (e.g., map the telephone information by
hash technique for each user). The issue of the privacy and ethical considerations will be discussed in the
following section.

Speci�cally, we display the distribution of user demographics (i.e., gender, age, education and income) of
collected users in Table 2. Most importantly, the hospitals provided the questionnaires information �lled out by
the users mentioned above, which includes the associated disease information. We collect healthy users as well
as patients with 7 representative disease categories, including dental, mental, birth, endocrinology, neurology,
orthopedics and cardiology. The distribution of the disease categories, i.e., healthy (185), dental (78), mental (55),
birth (83), endocrinology (101), neurology (87), orthopedics (59), and cardiology (99), is shown in Figure 1(a).

3.1.2 POI of Beijing.Through collaboration with Tencent incorporation, we were granted access to the points
of interest (POI) information collected by Tencent Maps. In order to link the raw mobility records with the
POI data, we �rst partition Beijing with a grid-based map segmentation. Speci�cally, we adopt a100< � 100<
disjointed grid, which means the distance between the adjacent minimal units on the grid-based map is 100
meters. Then we compute the distribution of the POI for each grid. It should be noted that we only pick out ten
possible related POI categories proposed by [11] for use, i.e., restaurant, company, government, shopping, life
service, recreation, sports, tourist attraction, education and residence. The total number of the points of interest
for each category is displayed in Figure 1(b).

3.1.3 Privacy and Ethical Considerations.Considering the sensitivity of this kind of data, we have adopted
the following protocols to tackle the potential privacy and ethical risks in data analytics. First of all, the whole
data is properly anonymized by the data owners before being available to us. Speci�cally, real user IDs are never
made available to the researchers. Moreover, our data analysis procedures are reviewed and authorized by the
dataset owners to ensure the compliance with privacy protocols in the Term-of-Use statements. Second, all the
researchers that have been authorized to access the datasets are bounded by strict non-disclosure agreements,
and our research protocol is approved by the local institutional board. Finally, all the data are stored in a secure
o�-line server, and only the authorized core researchers can access the data.

3.1.4 Preprocessing.To prepare a cleaner and higher-quality dataset for the downstream tasks, we take several
preprocessing procedures to denoise the raw trajectories. First of all, for our problem setting, we only utilize the
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mobility records before their �rst visit to the hospital for the patients who visit a speci�c department. Speci�cally,
we �lter out the users who never show up around the hospital to check the validation of the questionnaire
information from the spatial perspective. Secondly, we limit the highest speed of the trajectories to 120 kilometers
per hour, since the expressway in China limits the maximum speed per hour to 120 kilometers, and the speed
limits of most of the means of transportation for daily use, including the bus and subway, are lower than that
bound. Finally, to fully explore the mobility patterns, we only preserve the users with more than 50 records.

3.2 Preliminary Analysis

(a) Entropy (b) Straight Line Distance (c) Maximum Distance From Home

Fig. 2. The distribution of basic mobility metrics across di�erent disease categories.

To initially explore the correlations between mobility patterns and disease categories, we design three basic
and classical metrics to represent the mobility patterns and showcase their distribution among disease categories.
First of all, we compute mobility entropy (i.e., the historical probability that a location8was visited byD) for each
user. As is shown clearly in Figure 2(a), the healthy people rank �rst with 8.84 median of the entropy, followed by
dental (8.14), while the mental, endocrinology and birth falls behind, which has only 7.49, 7.53, 7.70 for the median
of the mobility entropy, respectively. Secondly, we �gure out the sum of distances travelled by an individual
per day. As can be observed clearly from Figure 2(b), healthy, dental and cardiology group traveled 37.01, 30.36
and 25.01 kilometers for the median of the distance respectively, while the birth, endocrinology, mental, and
orthopedics group has only 12.75, 13.86, 15.50, 15.87 kilometers for the median of the distance respectively. In
addition, we detect the "home" by �nding the places where the user visited most frequently during nighttime, and
then �gure out the maximum distance from home [10]. Figure 2(c) indicates that the healthy people go farthest
from home, and have 44.69 kilometers for the median of the distance. In contrast, the median distance from home
of the mental, birth and orthopedics group is only 25.56, 30.92 and 33.92 kilometers, respectively.

In brief, these three �gures showcase the di�erence of the mobility metrics lying in di�erent disease categories,
where the healthy and dental group displays an active mobility pattern, while the mental, birth and orthopedics
groups show inactive mobility patterns, which is in agreement with our intuition and common knowledge. Most
importantly, this preliminary analysis indicates that we might be able to predict the disease category based on
these interpretable mobility metrics that can re�ect the behavioral pattern of the user. However, it is di�cult for
our researchers to pick out all the metrics that can show great variance among di�erent disease categories for
downstream task (i.e., prediction task), since the distribution of the mobility metrics across disease categories, to
some extent, is subject to the characteristics of the dataset, including the number of the users, the length of the
mobility traces, the granularity of the disease categories or even the regions or countries covered in the dataset.
Therefore, it is of great importance to design a model that can automatically generate numerous mobility metrics
while preserving interpretability.
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3.3 Task Formulation
Finally, we formally de�ne our utilized data and problem as follows.

De�nition 3.1. (Urban mobility record, UMR) An urban mobility record is a quaternion¹D• ;• C•3º, which
denotes that userDvisits location; at timeCand stays at that location for duration3 , where; denotes a unique
area with geographical coordinates (i.e., longitude and latitude) and boundary in the urban space.

De�nition 3.2. (Point of interest, POI) A point of interest %is de�ned as a uniquely identi�able venue
with speci�c function � , e.g., residence, workplace, restaurant and park. In our model, each location has a POI
distribution vector which indicates the number of di�erent types of POIs around that location.

HealthWalks Target. Given the mobility records of users with the associated POI distribution data, we aim at
predicting the potential health risk for each user based on the mobility metrics automatically generated by a
deterministic �nite automaton. The derived mobility metrics should not only be able to enhance the performance
of the prediction task, but also to preserve �ne-grained interpretability that can explain the health signals re�ected
by the mobility trace.

4 METHOD
In this section, we are transforming the raw mobility records into a series of mobility metrics that can be used to
predict the disease category for each user, while preserving �ne-grained interpretability. There has been a major
defect in the most relevant related work [10], where several mobility metrics are intuitively chosen to predict
the psychological state. Since it takes a lot of time to specify each feature one by one, this intuitive approach, to
some extent, improves the interpretability at the sacri�ce of the accuracy of the model. Here, we balance the
two key factors, accuracy and interpretability, and propose a model based on deterministic �nite automata, to
automatically generate numerous interpretable features.

Furthermore, the relevant work [10, 11] either solely relies on raw mobility trace or POI check-in data, which
cannot fully extract the behavioral patterns of the raw mobility trace. Therefore, we combine the physical mobility
trace with the associated POI data and the demographics as input of the model to better capture the patterns
and health signals re�ected by the mobility trace. To conclude, we propose a model based on a deterministic
�nite automaton (DFA) to generate a great number of mobility features automatically. Then, we aggregate POI
information to enrich the semantics for the individual trajectory. Finally, we utilize regularization techniques to
eliminate redundant features from the model for the �nal prediction.

4.1 Definitions of Metrics
Before formally introducing the main structure of our model, we should �rst give the de�nitions of the notations
and mobility metrics utilized in our model.

4.1.1 Mobility Metrics.First of all, we regard the mobility trace as a sequence of mobility records de�ned
in Section 3.3, which is widely used in the research of mobility modeling [38]. Then, we choose some classical
mobility features from [39], [40] and [38] to represent an individual's moving behavior and pattern. It should be
noted that we identify the location that user8visits most frequently during nighttime as his or her home and
the place visits most frequently during daytime as his or her workplace. Previous work [36] has suggested that
residence and workplace are two important locations since people spend most of their time around residence and
workplace during daytime and nighttime, respectively. Therefore, we identify these two locations and link some
mobility metrics with the two vital locations using well-established techniques [36, 41]. The de�nitions of the
mobility metrics utilized in our work are displayed as follows.

� The number of di�erent locations visited, T d [10] This metric #3D is de�ned as the total number of
unique locations visited by userD.
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� Maximum distance, Jm [42]. The metric is computed as the maximum distance between two locations
travelled by an individual.

�< D = max
;8•;92;1•”””;#

dist¹;8• ;9º•

� Straight line distance, Js . It is de�ned as the sum of distances travelled by a user:

�BD =
# � 1Õ

8=1

dist¹;8• ;8̧ 1º•

where# denotes the number of locations visited by userD.
� Radius of gyration, X [43] . This metric is widely used to weigh the area covered by the user, which is

computed as:

' D =

vut
1
#

#Õ

8=1

dist¹;8•2º•

where# is the number of locations visited by user8, and2 is the coordinates of the center of mass of the
locations visited by userD.

� Maximum distance from home, Jh [10] . We �rst identify the location that userDvisits most frequently
during nighttime as the home, and then compute the maximum distance traveled from there:

�� D = max
;82;1•”””;#

dist¹;� • ;8º•

where# denotes the number of locations visited by userDand;� denotes the coordinates of the home.
Another metricThe maximum distance from workplace, Jw [36] can be computed in a similar way.

� Mobility entropy [44] Mobility entropy is inspired by the Shannon entropy to quantify the predictability
of an individual's movements based on the historical probability that a location was visited by the user. We
incorporate two types of entropy in our method, theuncorrelated entropy Kuand thereal entropy Kr:

�DD = �
Õ

;

?; log2 ?;• �AD = �
Õ

B

?B log2 ?B•

where; iterates over locations visited by userD, and?; represents the probability that a location; was
visited by userD, i.e. the number of visits to location; divided by the total number of records generated by
userD; Biterates over all possible sequences of locations, and?B denotes the probability thatBappears as a
contiguous subsequence in the user's trajectory.

4.1.2 POI Metrics.POI features are demonstrated to be closely related to user living patterns [33, 45]. For
each location, the POIs in its vicinity are classi�ed into 10 types and counted as per Section 3.1.2. Three types of
metrics for a location can thus be de�ned:

� The count of surrounding POIs, Vsum.
� The proportion of a certain type among surrounding POIs, Vi (0 � 8� 9). De�ned to be the number

of surrounding POIs of type8divided by%sum. Types8= 0•1• ” ” ” •9 correspond to POIs marked with tags (0)
restaurant, (1) company, (2) government, (3) shopping, (4) life service, (5) recreation, (6) sports, (7) tourist
attraction, (8) education, and (9) residence, respectively.

� The variety of function, Vsd. De�ned to be the standard deviation of%0• %1• ” ” ” • %9.

Now that all the notations and metrics utilized in our model have been de�ned, we introduce the major
framework ofHealthWalks.
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