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Abstract—Understanding human mobility benefits numerous applications such as urban planning, traffic control and city management.
Previous work mainly focuses on modeling spatial and temporal patterns of human mobility. However, the semantics of trajectory are
ignored, thus failing to model people’s motivation behind mobility. In this paper, we propose a novel semantics-aware mobility model
that captures human mobility motivation using large-scale semantic-rich spatial-temporal data from location-based social networks. In
our system, we first develop a multimodal embedding method to project user, location, time, and activity on the same embedding space
in an unsupervised way while preserving original trajectory semantics. Then, we use hidden Markov model to learn latent states and
transitions between them in the embedding space, which is the location embedding vector, to jointly consider spatial, temporal, and
user motivations. In order to tackle the sparsity of individual mobility data, we further propose a von Mises-Fisher mixture clustering for
user grouping so as to learn a reliable and fine-grained model for groups of users sharing mobility similarity. We evaluate our proposed
method on two large-scale real-world datasets, where we validate the ability of our method to produce high-quality mobility models. We
also conduct extensive experiments on the specific task of location prediction. The results show that our model outperforms
state-of-the-art mobility models with higher prediction accuracy and much higher efficiency.

Index Terms—User grouping, human mobility modeling, multimodal embedding, hidden Markov model.
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1 INTRODUCTION

With the increasing popularity of personal mobile devices
and location-based applications, large-scale trajectories of
individuals are being recorded and accumulated at a faster
rate than ever, which makes it possible to understand hu-
man mobility from a data-driven perspective. Modelling hu-
man mobility is regarded as one of the fundamental tasks for
numerous applications: not only does it provide key insights
for urban planning, traffic control, city management and
government decision making, but also enables personalized
activity recommendation and advertising.

As a result, there has been substantial previous work
on human mobility modelling [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10]. The majority of them focus on modelling the
spatial and temporal patterns. Human mobility is generally
modelled as a stochastic process around fixed point [1] and
various models for next location prediction [2], [3], [4], [5],
[6] have been proposed. The main shortcoming of these
mobility models, however, is that they overlook the activity
(often referred to as the semantics of trajectory [11], [12],
[13]) a person engages in at a location within a certain time,
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i.e., they are not capable of explaining people’s motivation
behind mobility. For instance, people who appear at nearby
locations with different intents (e. g. a person going to office
for work and a person going to the movie for entertainment
in the same neighborhood) will be considered the same,
while people visiting different locations for similar purposes
(e. g. white-collar A goes to supermarket S1 after work in
region R1 while white-collar B goes to supermarket S2 after
work in region R2) are considered different.

To tackle this problem, recently a few semantics-aware
mobility models [7], [8], [9] have been proposed, which
attempt to jointly model spatial, temporal and semantic
aspects. However, they manually combine spatial, temporal
and topic features to take semantics into account, which
still fail to properly distinguish motivation between users.
Therefore, the problem of semantics-aware mobility mod-
elling remains very much an open question.

Instead, in this paper, we aim at learning inner se-
mantics embedded in human mobility in an unsupervised
way to consider all the factors as a whole. We propose
a novel semantics-aware mobility model using large-scale
semantics-rich spatial-temporal data – from the location-
based social networks such as Twitter, Foursquare and
WeChat – which consist of user, location, time, and activity
information. Specifically, the new proposed mobility model
addresses the following two issues.

• The model is able to capture motivation underlying
human mobility. For instance, it is able to identify
that the movement of white-collar A to supermarket
S1 in region R1 after work and white-collar B to
supermarket S2 in region R2 after work are similar
in motivation because they both go for shopping.
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On the other hand, the model is also able to capture
the difference between a person going to office and
another going for a movie in nearby locations, since
they move for different purposes.

• The model is able to discover intrinsic states under-
lying human mobility as well as transition patterns
among them. A state takes into account spatial, tem-
poral and user motivation as a whole. For example,
working in an office building at district C during
the day is a possible state, and a user in this state
having 80% chance to transit to the state of being in
a restaurant at district D in the evening for food is a
possible transition pattern.

Such semantics-aware mobility models are especially
helpful and enable various applications. First of all, they are
well-suited for next location prediction [8], and thus bene-
fit personalized recommendation and targeted advertising.
Unlike existing work, our model jointly considers various
aspects of human mobility, thus has the capacity to greatly
enhance prediction accuracy. Secondly, it is potentially use-
ful in revealing the economic status of the city for decision
makers since the model captures fine-grained routines and
motivations in human mobility.

However, developing a semantics-aware mobility model
is challenging due to three major reasons. (1) Data Integra-
tion: It is difficult to integrate and represent spatial, temporal
and semantic information as a whole since they belong to
different spaces and have distinct representations. (2) Model
Construction: It is nontrivial to define latent states and iden-
tify transition patterns given the complexity and diversity
of data. (3) Data Sparsity: It is challenging to construct both
reliable and fine-grained mobility model at the same time
given the limited number of records for each individual
user.

To tackle the above three challenges, we propose an
embedding-based Hidden Markov Model (HMM) to cap-
ture patterns of human mobility. To address the data in-
tegration challenge, we propose a multimodal embedding
method to project user, location, time and activity on the
same embedding space based on co-occurrence frequency
in an unsupervised way while preserving original seman-
tics in the dataset. Through this embedding procedure,
all users, locations, times and activities appearing in the
original dataset are represented by a numeric vector of
the same length, which can be directly compared using
classical distance metric (e. g. cosine similarity). Then, we
adopt HMM model in the embedding space to learn latent
states and transitions between them for mobility modelling,
where each latent state is the location embedding vector,
so that spatial, temporal (temporal information affects the
overall embedding and thus affects the HMM training pro-
cess) and user motivations are jointly considered in the
model. Moreover, to solve the problem of data sparsity,
we propose a von Mises-Fisher mixture clustering on the
user embedding vector for user grouping so as to learn a
reliable and fine-grained model for groups of users sharing
mobility similarity. We train a separate HMM model on
each user group and obtain an ensemble of high-quality
HMM models. Finally, we project the latent state of each
user group back to original spatial, temporal and activity

space to study human mobility patterns. Our contributions
can be summarized as follows:

• We propose a novel mobility model which fully
takes into account semantics in human mobility. It
not only considers spatial and temporal aspects, but
also the activity the user engages in as well as user
motivation behind mobility. Furthermore, to the best
of our knowledge, our model makes the first attempt
to jointly consider these factors with their complex
inner correlation in an unsupervised way.

• We first introduce the techniques of embedding into
mobility modelling to propose a semantics-aware
HMM model. We train an ensemble of HMMs in the
embedding space based on von Mises-Fisher mixture
user grouping. We then project HMM latent state
back to the usual space to analyze human mobility
pattern. Through this latent-state-based modelling,
we obtain high-quality group-level mobility model.

• We evaluate our proposed method on two large-scale
real-world datasets. The results justify the ability
of our method in producing high-quality mobility
model. We also conduct extensive experiments on
the specific task of location prediction. We observe
that our model outperforms baselines with higher
prediction accuracy and incurs lower training cost.

2 MOTIVATION AND MODEL OVERVIEW

In this section, we discuss the motivation in developing
our mobility model. We first discuss the system design
philosophy, and then provide an overview of our solution.

2.1 System Design Philosophy
Previous works mostly focus on modelling spatial-temporal
patterns in trajectory regardless of semantics, i.e., clus-
tering users by extracting features from the geographical
trajectory, learning Markov model in geographical space,
etc. However, we aim to propose a novel semantics-aware
mobility model. In order to extract semantics, the type of
POI attached to the trajectories is valuable since it reflects
users’ motivation behind mobility, making it possible to
model human mobility in a deeper way. Generally, the type
of POI with explicit semantics, such as shopping, school,
tourist attraction, etc., that the user visited indicates the
motivation why the user went to the location. The key idea
of our work, therefore, is to integrate semantic information,
which can be learnt from POI, with user trajectory data
for mobility modelling so as to discover underlying and
insightful human mobility patterns.

To capture semantics behind these different types of in-
formation in trajectory, we therefore propose a multimodal
embedding method by constructing co-occurrence graph
and conduct graph-embedding to project these information
on the same latent space. By considering the co-occurrence
relationship, the latent space remains the proximity of se-
mantics among different types of information. The introduc-
tion of multimodal embedding further provides a natural
solution to the challenges of data sparsity and model con-
struction. On one hand, users engaging in similar activities
and staying in nearby regions are closer to each other in the
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Fig. 1. Overview of the proposed embedding based group-level human
mobility model.

latent space. Thus, we can find user groups sharing mobility
similarity using clustering methods in the latent space. We
leverage the group mobility information to train a model
for each group. On the other hand, semantics are preserved
in the latent embedding space. Thus we can train an HMM
model whose observable states are the embedding vectors
representing locations, which captures the intentions of user
much more accurately. The projected data in the latent space
reflects mobility pattern better than the original trajectory
data, thus leads to better prediction performance.

2.2 Model Overview

Based on the approach discussed above, we introduce
our proposed model overview in Fig. 1, which includes
three major modules. The representation learning module
constructs a heterogeneous graph and embeds personal,
temporal, spatial and semantic information into a latent
space. Based on the obtained latent space, the Embedding-
based User Grouping module clusters users sharing similar
mobility and life patterns and the Group-level Hidden Markov
Model module learns human mobility patterns with the
embedded data. Now we first formally define the mobility
modelling problem and then introduce the system model
with details of these three modules.

Multimodal Embedding module builds the structure of
user (u), temporal (t), spatial ((lo, la)) and user motiva-
tion/semantics (P ) information. When two units appear
in the same record, co-occurrence happens. Based on the
extracted co-occurrence, a heterogeneous graph is learned,
which embeds the co-occurrence relationships into one la-
tent space. The graph encodes the human mobility inten-
tions into vectors in that embedding space.

User Grouping module clusters users based on user
embedding vectors in the latent space. Motivated by the
effectiveness of cosine similarity in the embedding space
[14], [15], we model each cluster of users as a von Mises-
Fisher (vMF) distribution in the latent space. Naturally, we
use mixture-of-vMFs model [16] to cluster users into groups
in latent spaces for follow-up HMM training.

Group-level HMM module learns the transitions patterns
in the latent space of a group of similar users. In the la-
tent/embedding space, since the temporal and spatial prox-
imity of human trajectory and intrinsic correlations between

temporal, spatial and semantic information have been well
captured, hidden Markov model is good enough for training
and prediction. Similar to user grouping, each hidden state
corresponds to a vMF distribution in the embedding space.
For prediction, we calculate the scores of locations in the
candidate and obtain the top K results.

TABLE 1
The introduction of basic notations.

ti the i-th time slot
L set of areas
lu a location of user u
la latitude
lo longitude
U the set of all users u
yu records of user u
H semantic information set
P the set of POIs
p a POI

In our model, we discretize time into discrete time
slot (t1, t2,....) and spatial space into finite set of area
L = {l1, ..., lNL}, where NL is the total number of dis-
cretized area in L. For each user u in the set of all users
U, yu = (yu1 , ..., y

u
i , ..., y

u
Nu) denotes history trajectories of

user u, where Nu denotes the number of sampling points
in user u’s trajectory. yui = (u, tui , l

u
i ) denotes the location

lui being visited by user u at time slot tui and lui = (la, lo)
u
i .

(Note that Nu of each user is probably different). Besides
the trajectory data, our model also adopts semantic infor-
mation set H = {h1, ..., hk, ..., hNL}, where hk = (lk, Pk).
Pk = (p1, ..., pj , ..., pNP ) denotes the associated POIs in the
area lk, pj denotes the POI type, and NP is the number
of POI types, i.e, the check-in POI in the history visited lk.
For evaluation, our model predicts the next state (location)
yuNu+1 = (tuNu+1, l

u
Nu+1) of each user u, based on the past

trajectory yu = (yu1 , ..., y
u
i , ..., y

u
Nu). The basic notations are

reported in Table 1.

3 METHOD

In this section, we first design a multimodal embedding
module to capture the diversified semantics, and then
present the user-grouping based HMM, which learns fine-
grained semantics-aware mobility behaviors in the embed-
ding space.

3.1 Multimodal Embedding
The designed multimodal embedding module jointly maps
the user, time, location, and semantic information into the
same low-dimensional space with their correlations pre-
served. While the semantics are natural POI types P for
embedding, space and time are continuous and there are
no natural embedding units. To address this issue, we
break the geographical space into equal-size regions and
consider each region as a spatial unit l (500m ∗ 500m grid).
Similarly, we break one day into 24 hours distinguished by
weekday and weekend and consider every hour as a basic
temporal unit t (totally 48 units). Based on this division, the
embedding module extracts the correlations between user,
time, location and POI type as co-occurrence relationships,
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Fig. 2. Illustration of the details of our representation learning model. The
co-occurrence relationships construct 7 sub-graphs, which are jointly
embedded with graph-based method.

and then embeds all the co-occurrence relationships into one
latent space to encode the human mobility intentions into
vectors, as shown in Fig. 2.

3.1.1 Co-occurrence Relationship

The co-occurrence relationship describes the times of co-
occurrences between different information. In our data, each
record is composed of user, time, location and POI type, and
the co-occurrence happens when two different kinds of units
appear in one record. This relationship reflects the intrinsic
correlations between different information units. Since the
graph is a very natural data structure that describes the
relationship between different units, we represent the co-
occurrence relationship through constructing a heteroge-
neous graph. Specifically, the nodes of the graph include
who (u), when (t), where ((la, lo)) and why (P ). The edge
weights of the graph indicate the number of co-occurrences
between two units.

3.1.2 Heterogeneous Graph Learning

Based on the co-occurrence relationship, we express their
relationships with the edges and weights. In the graph, there
exist four different node types corresponding to four unit
(information) types (user, time, location and POI type). Each
co-occurrence relationship constructs one edge, whose weight
is set to be the counts. Besides the explicit relationships,
the graph also keeps implicit interactions among units. The
implicit interaction means that two nodes are not directly
connected but share a lot of common neighbors. The more
same neighbors two nodes share, the more semantically
close they are. Correspondingly we will embed them closer
in the semantic latent space to pave the way for the follow-
ing models to capture the semantics. Based on this principle,
we conduct the heterogeneous graph learning to project
them into a common semantic space. Note that, in the
embedding space, these nodes should be close in the cosine
distance metric. Thus we first model each node’s emission
probability distribution based on their latent embedding.
Then, we try to minimize the distance between the real
observed distributions and these model distributions.

The likelihood of generated node j given node k is
defined as

p(j|k) =
e−v

T
j ·uk∑

i∈U
e−v

T
i ·uk

, (1)

where uk and vj represent embedded vector of node k and
j respectively. Note that for node j there are two different
embedding vectors with different functions. vj represents
the vector when node j is the given node while uj is the
vector when node j acts as the emitted node. In addition,
we define true distribution observation as

p̂(j|k) =
wkj
dk

, (2)

where dk is defined as
∑
l∈U

wkl and wkj represents the edge

weight.
In order to minimize the distance between the

embedding-based distributions and truly observed distribu-
tions, we define the loss function for the sub-graph GUV as
follows,

LUV =
∑
j∈U

djdKL(p̂(·|j)||p(·|j))+
∑
k∈V

dkdKL(p̂(·|k)||p(·|k)),

(3)
where dKL() is Kullback-Leibler divergence [17]. With four
different nodes representing user(U ), temporal (T ), spatial
(S) and POI type (H) information, the overall loss function
can be obtained as

L = LUT +LUS +LUH +LTS +LTH +LSH +LHH . (4)

Due to high computational complexity of optimizing the
loss function with large scale graph, stochastic gradient
descent with negative sampling is adapted for computa-
tional efficiency [14]. For an edge from node j to node k,
the negative sampling method treats node k as a positive
example while randomly selects N nodes, which are not
connected to j as negative examples. As a result, we need to
minimize an adapted loss function as

L′ = − log σ(uTj · vk)−
N∑
n=1

logσ(−uTn · vk), (5)

where σ(·) represents the sigmod function [18].

3.2 Grouping-based HMM
3.2.1 User Grouping in the Embedding Space
After embedding different types of information into the em-
bedding space, we obtain representation vectors for users,
which maintains the semantic proximity in the latent space.
Cosine distance is more effective than Euclidean distance for
measuring the semantic proximity in the embedding space,
i.e., only the directions of the embedding vectors matter,
which is demonstrated in [14], [15]. Also, there are some
semantic models that use von Mises-Fisher (vMF) distribu-
tion in word embedding space [19], [20] and multimodal
embedding space [21].

Thus, we normalize all the embedding vectors to vectors
with lengths of 1, i.e., projecting them into a (d − 1)-
dimensional spherical space. For such vectors on a unit
sphere, we use vMF to model each cluster of users’ vectors
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in the latent space. For a d-dimensional unit vector x that
follows d-variate vMF distribution, its probability density
function is given by

p(x|µ, κ) = Cd(κ)eκµ
T x, (6)

where the mean direction unit vector µ and the concentra-
tion parameter κ are two important parameters that describe
vMF distribution. The normalization constantCd(κ) is given
by

Cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
, (7)

where Ir(·) means the modified Bessel function of the first
kind and order r. Note that, Cd(κ) is obtained by normaliza-
tion on the (d− 1)-dimensional sphere instead of the whole
d-dimensional space.

In order to cluster users into several groups that have
similar mobility semantic patterns, we use a mixture of vMF
model to fit the embedded vectors of users. The probability
of vU in a k-vMF distribution is given by

p(vU |α, µ, κ) =
k∑
h=1

αhfh(vU |µh, κh), (8)

where αh are the weights of each mixtures and sum to one.
We design an EM framework to maximize the probabil-

ity of the whole k-vMF model. After we randomly set the
initial value for each vMF, we repeat E-Step and M-Step
until the parameters coverage. In E-step, we estimate the
probability of each user Ui belonging to each group,

p(h|vUi , µ, κ) =
αhfh(vUi |µh, κh)∑k
l=1 αlfl(vUi |µl, κl)

. (9)

Also, we can adapt it into a formation of hard labels, i.e.,
assign each user to just one group.

p(h|vUi , µ, κ) =

{
1, if h = argmaxh′p(h′|xi, µ, κ),
0, otherwise.

(10)

In our model, both the soft and hard assignments of hid-
den state is feasible, which is a tradeoff between efficiency
and accuracy. In M-Step, we maximize the probability of the
model by updating paremeters. We first update αh given by,

αh =
n∑
i=1

p(h|xi, µ, κ)/N, (11)

We then calculate rh as follows,

rh =

∑n
i=1 xip(h|xi, µ, κ)∑n
i=1 p(h|xi, µ, κ)

, (12)

at last, we update the parameter µh and κh based on rh for
each cluster given by,

µh =
rh
‖rh‖

;κh =
‖rh‖d− ‖rh‖3

1− ‖rh‖2
. (13)

When the difference of total probability of this model
before and after one iteration is less than a threshold, this
iterative process terminates.

representation    learning

obser-

vation

latent  space

raw data

HMM

learning prediction

embed

vector

hidden state

Fig. 3. Illustration of the details of HMM-based prediction model in the
latent space and its relationship with the physical locations.

3.2.2 HMM-based model
Based on the representation vectors and the user groups,
we design an HMM for each group of users to model the
transitions among trajectories in the semantic latent space.
It chooses the embedding vectors representing locations as
observations to model the sequence as shown in Fig. 3. The
proximity of semantic vectors characterizing the activity of
users should also be measured by the cosine similarity like
the users’ representation vectors [14], [15]. Thus, we utilize
vMF distribution as the emission probability of each hidden
state.

To describe the overall model, we have:

• A K-dimensional vector Π, where πk = p(z = k),
which defines the initial value of hidden states;

• A transition matrix A = {aij} ∈ RK×K , which de-
fines the transition probabilities between K hidden
states with aij = p(zn = j|zn−1 = i);

• A set of vMFs B = {pvMFi
(ej)}, where ej is the

emission from a hidden state zj = i into the embed-
ding space.

Then, our model is parameterized by Φ = {Π,A,B}. The
occurrence probability of an observation sequence E =
{e1, e2, ..., eN} with the state sequence Z = {z1, z2, ..., zN}
can be expressed as follows,

p(E|Z,Φ) =
N∏
i=1

pvMFzi
(ei). (14)

The cumulative occurrence probability of observation se-
quence E is expressed as follows,

p(E|Φ) =
∑
Z

p(E|Z,Φ) · p(Z|Φ) (15)

=
∑
Z

πi1 ·
N−1∏
j=1

pvMFi
(ej)aij ij+1

· pvMFi
(eN ). (16)

The main difference between our proposed HMM and
the tradition HMM is that we set the emission function of
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HMM as the vMF and set the observation as the embedding
vectors representing locations instead of the locations’ coor-
dinates. By this way, we take rich semantics into account.

We adapt the Baum-Welch algorithm, an Expectation-
Maximization (EM) procedure for HMM, to estimate the
parameters in the embedding space. We first define two
auxiliary probabilities:

ξt(i, j) = p(zt+1 = j, zt = i|E,Φ), (17)
γt(i) = p(zt = i|E,Φ), (18)

where t = 1, 2..., N . To calculate efficiently, we exploit
a forward-backward procedure [22] to calculate these two
probabilities. The forward probability αt(i) is

αt(i) = p(e1, e2, ..., et, zt = i|Φ). (19)

Then αt+1(j) can be calculated as follows,

αt+1(j) =
[ K∑
i=1

αt(i)aij
]
bj(et+1), (20)

and initial values are

αt(i) = πibi(e1). (21)

The backward probability is

βt(i) = p(et+1, et+2, ..., eN |zt = i,Φ), (22)

which can be calculated as follows,

βt(i) =
K∑
j=1

aijbj(et+1)βt+1(j), (23)

with initial values βN (i) = 1. Based on βt(j) and αt(i),
ξt(i, j) can be calculated as

ξt(i, j) =
αt(i)aijbj(et+1)βt+1(j)∑K

m=1

∑K
n=1 αt(m)amnbn(et+1)βt+1(n)

. (24)

While γt(i) can be calculated as

γt(i) =
αt(i)βt(i)∑K
j=1 αt(j)βt(j)

. (25)

Based on ξt(i, j) and γt(i) with Φ(t), the parameters of
HMM can be updated by the following formulas,

πi = γ1(i); aij =

∑K−1
t=1 ξt(i, j)∑K−1
t=1 γt(i)

; (26)

ri =

∑K
t=1 γt(i)et∑K
t=1 γt(i)

;µi =
ri
‖ri‖

;κi =
‖ri‖d− ‖ri‖3

1− ‖ri‖2
. (27)

When the training process terminates, we obtain the HMM
based semantics-aware mobility model.

In order to leverage the model for next location predic-
tion, we construct a set of length-2 sequences (eN , eN+1)
where eN = Ef (luN ) and eN+1 = Ef (luN+1) for the locations
in candidates set. Then, we calculate the probability of

generating such a sequence from the trained model as the
score S of the sequences given by

S(luN+1) (28)
=p(eN , eN+1|Φ) (29)

=
K∑
m=1

K∑
n=1

πpvMFm(eN )a12pvMFn(eN+1) (30)

=
K∑
m=1

K∑
n=1

π1a12Cd(κm)eκmµ
T
meNCd(κn)eκnµ

T
neN+1 . (31)

where Φ is the set of parameters of HMM. Thus, we define
the score of next location as the probability of generating
such a sequence from the our trained model and generate
list of locations with top K scores.

4 EVALUATION

In this section, we evaluate our proposed model through
next location prediction on two real-world large-scale
datasets. We first introduce the experimental settings includ-
ing datasets, baseline algorithms, parameters and hardware.
Then, we evaluate our model in the following four parts:

• Presenting case study and the corresponding insight-
ful results to validate the ability of our model in
discovering semantic mobility patterns.

• Demonstrating the effectiveness and efficiency of our
method compared with baselines, including state-of-
the-art works and variants of our model.

• Illustrating the effect of main parameters in our
model such as the dimension of embedding, the
number of groups and the number of hidden states.

• Exploring the performance of our model on users
with different mobility patterns including the num-
ber of different places visited and the trajectory’s
entropy.

4.1 Experimental Settings

4.1.1 Dataset
We use the following two real-world datasets to evaluate
the performance of our system.

App Collected Dataset: It was collected by a popular
localization platform. When users use related Apps, such
as WeChat (the most popular online instant messenger
in China), their location information will be uploaded to
the servers and is collected by this platform. Overall, the
utilized dataset is collected from 7, 000 anonymous users,
who are active during Sept. 17th to Oct. 31st, 2016 in Beijing.
Each record consists of the following fields: the anonymized
user, time, location of GPS coordinates, and the associated
POI with type information.

Check-in Dataset: This publicly available dataset comes
from Foursquare, a location-based service application. It
includes 187, 568 records of 5, 630 active users from Feb.
25th, 2010 to Jan. 19th, 2011 in New York. Each record
consists of the following fields: the user ID, the time stamp,
location, and the type of POI that the user check in. The POI
types include travel, shop, professional, college, residence,
outdoors, food, arts.
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An important difference between these two datasets is
that the app collected dataset is passively recorded in the
background while the Foursquare dataset is recorded by
users’ active check-in. As a result, there are many records
at home or working places in the first dataset which reflect
users’ real life patterns while there are only a few such
records in the Foursquare datasets since people tend to
actively check in at explorative places such as shopping
malls or restaurants in their spare time rather than home
or working places.

4.1.2 Baselines
We compare our model with the following five solutions
including the state-of-the-art methods.

Law [24] models the human mobility as a Lévy flight
with long-tailed distributions.

GeoHMM [25] [26] trains one HMM for all users’ trajec-
tory, where each hidden state generates locations by a Gaus-
sian distribution, which is a classical method for trajectory
prediction.

EmbedGaussHMM trains one HMM where each hid-
den state generates vectors representing locations by the
Gaussian distribution in the latent space obtained by graph-
embedding.

EmbedVmfHMM replaces the Gaussian distribution by
vMF distribution in the last model so as to adapt to the
cosine distance metric in the semantic latent space and
improve the efficiency.

Gmove [8] is the state-of-the-art mobility model. It con-
structs several HMMs and assigns users to each HMM by
a soft label proportional to the probability of drawing the
trajectory from the HMM. For comparing the user grouping
part, we set each HMM structure as EmbedVmfHMM.

On the other hand, our model, denoted by Embed-
GroupHMM, performs a mixture of vMF which clusters
users in the latent space, and trains one model using Em-
bedVmfHMM for each group of users.

We compare the performance of the EmbedGaussHMM
method and EmbedVmfHMM method to show which kind of
distribution is more appropriate for the emission probability
function in the embedding space. To show the advantage
of our method for user grouping in embedding space, we
compare EmbedGroupHMM with Gmove [8], which clusters
users based on the transitions.

4.1.3 Evaluation Setup
We partition each dataset into the training set and testing
set. For the app dataset, the first 36 days are regarded as
training set while the remaining 10 days are the testing set.
As the original records have several continuous records at
the same place over time while pass-by records have no
apparent meaning, we use the extracted stays as input data
of the models. For the check-in dataset, the records before
October 1, 2010 (about seven months) are the training sets
and the others (about two months) are the testing set.

We use semantics-aware location prediction as the
task for evaluation. Formally, given a trajectory yu =
(yu1 , ...y

u
i ..., y

u
Nu) as ground truth, we use yui to predict

yui+1. First, we use yui+1 to generate a set of candidates.
Specifically, we select the locations in the dataset that are

less than 3km from the true location as candidate sets. Then
we calculate the score of the combination of yui and each
candidate in the sets. The score is calculated by (28), which
is the probability of generating such a sequence (yui , y

u
i+1)

by the mobility model with the learned parameters. At last,
we sort all the candidates in descending order of score and
calculate the accuracy of top K. The higher the accuracy is,
the better the mobility model is.

In terms of the next place prediction enabled by our
model, it includes three important parameters: the number
of dimensions in embedding space E, the number of hidden
states K and the number of user groups G. For performance
comparison, we set E = 50, G = 10 and K = 10 for app
collected dataset and E = 50, G = 20, K = 10 for the
check-in dataset by parameter tuning.

Note that, the core strength of our model is semantics-
aware mobility modeling rather than trajectory prediction.
Some techniques are specifically optimized for trajectory
prediction, however, our model is more about semantic
mobility pattern discovery, which is unsupervised and inter-
pretable. So, we didn’t add them into the baselines. Also, we
don’t claim that our method achieves the best performance
for trajectory prediction compared to the state-of-the-art
location prediction techniques.

To clearly demonstrate their effect, we evaluate the per-
formance by varying one parameter while fixing others. We
implemented our method (except the embedding part which
is adapted by LINE [27] implemented in C++) and the base-
line methods in JAVA and conducted all the experiments
on a computer with 4.0 GHz Intel Core i7 CPU and 64GB
memory.

4.2 Case Study
After running our model on the two large-scale datasets, we
obtained G mobility patterns corresponding to G groups of
users. We select two examples from the app collected dataset
to illustrate the physical meaning of the patterns discovered
by our model. One merit of our model is that different types
of information are projected into a common embedding
space, which facilitates the comparison of semantic prox-
imity. Therefore, we can infer the semantics of hidden states
by finding the nearby information units in the embedding
space. To clearly demonstrate the mobility pattern with
semantics, we map different types of information on a 2D
plane with the proximity remained by t-SNE [23]. Also, we
show the transition probability matrix by heat map. The
depth of color represents the probability of transiting from
vertical index hidden state to the horizontal index hidden
state.

For the group example 1 in Fig.4, we can infer that this
group probably represents sport-lovers. We observe that the
hidden states 6 and 7 mean the activity of doing sports be-
cause they are near POI type ‘fitness’ (which contains gym,
basketball court, natatorium, etc.) while the two temporal
points during 12:00-18:00 refers to the most frequent time
when people do sports. We also observe that this group of
people transit to the state of doing sports from multiple
hidden states. Furthermore, the state 5 often goes back to
itself and is close to POI type ‘estate’ which strongly implies
home.
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Group Example 1 Group Example 2

Fig. 4. Two examples of the user groups. We map the embedding vectors of time, POI types and the central vector of each hidden state on a 2D
plane with t-SNE [23]. The two heat maps in the middle represent HMM transition probability matrixes.

For the group example 2 in Fig. 4, we can infer that this
group represents tourists. First, there are hidden states near
POI types ‘tourism attraction’, ‘shopping’, ‘accommodation’
but no hidden state near ‘estate’. Furthermore, the hidden
state 10 locates near POI type ’infrastructure’ which consists
of airports, train stations, bus stop, etc. Also, there are many
hidden states that transfer to the hidden state 10 which
is coherent with the character of transportation. To avoid
confusion, note that the POI type ‘vehicle’ includes petrol
station, auto shop, etc.

4.3 Performance Comparison
To demonstrate the effectiveness and efficiency of our pro-
posed model, we test it on two real large-scale datasets:
app collected dataset and Foursquare. For both datasets, we
show the accuracy of top 5 and top 10 results in Fig.5. For
both datasets, the methods that take semantics into account
by embedding significantly improve the performance for
prediction. Also, the EmbedVmfHMM is better than Em-
bedGaussHMM while the speed is much faster shown in
Fig. 6, which shows the superiority of vMF. Comparing our
method with the Gmove [8], we can observe that our user
grouping method achieves similar results while the speed is
more than 80 times faster shown in Fig. 6. Finally, compared
with EmbedVmfHMM, EmbedGroupHMM group users into G
groups and train one HMM for each group. We can observe
a significant improvement in accuracy by user-grouping.

The efficiency of our proposed model is stable on both
datasets. The time complexity of embedding part of our
method is O(DN |E|), where the D is the dimension of the
embedding space, theN is the number of negative sampling
and the |E| is the number of edges in the graph. This part
typically costs couples of minutes, which is adapted by
LINE demonstrated that can scale for large datasets in [27].
In Fig. 6, we report the training time of our method and

(a) App Collected Dataset. (b) Check-in Dataset.

Fig. 5. Prediction Accuracy of Top K.

Fig. 6. Training time on two datasets.

baselines (not counting embedding part) on both datasets
with a logarithmic y-axis. LAW does not need to train the
model, so we don’t report it. We find that EmbedVmfHMM
is more than 7 times faster than EmbedGaussHMM, because
estimating parameters of vMF is faster than Gaussian dis-
tribution. Also, Gmove groups the users like our proposed
method, but our method is more than 80 times faster than
Gmove. Because our method only needs to clustering the
users in embedding space by one time, while user grouping
in Gmove is an iterative process. Typically, the user group-
ing and HMM in our algorithm typically costs couples of
minutes. Due to the nature of HMM training, the time
complexity is quadratic in K. Compared to training one
HMM for all users, training one HMM for each group can
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Fig. 7. Effects of parameters.

(a) Unique Locations Visited. (b) Mobility Entropy.

Fig. 8. Accuracy of Location predictions for users with different attributes.

help decrease K to reduce time complexity. Also, the HMM
training processes for different groups are independent, so it
can be easily parallelized. Our method costs the similar time
with the classical method GeoHMM. Overall, compared to
the state-of-the-art baseline methods, our proposed method
either achieves much better results or costs much less time.

4.4 Parameter Effect
To understand the roles of system parameters in our pro-
posed mobility model, we vary these parameters to plot the
performance curve of our model. There are three important
parameters in our model, which respectively come from the
three modules:

• The embedding dimension D in Multimodal Embed-
ding module.

• The number of user groups G in User Grouping
module.

• The number of hidden state K in Group-level HMM
module.

We use the accuracy of top 5 locations prediction as the
main performance indicator to tune the parameters. To save
space, we only report the process of tuning parameters on
app collected dataset. We show the experiment details as
follows.

From Fig. 7 (a), we can observe that the accuracy is
highest when D = 50. D decides the quality we embed
the semantic information into our model. From Fig. 7 (b),
we can observe that our model obtains the best performance
when G = 10. When the number of user groups is too small,
people with quite different mobility patterns are fused in
one group which severely decreases the model performance.
When the number of groups is too great, on the other hand,
the model will suffer from data sparsity issue, as there are
not enough data to train an HMM for each group. Thus,
the optimal value of G, which helps the model attains the
best performance, implies the actual number of user groups
with similar mobility patterns. From Fig. 7 (c), we can

observe that when K < 10, the performance is apparently
lower than when K >= 10. This is because many different
mobility behaviors are not properly distinguished when
represented by a few hidden states (when K is too small).

4.5 Performance on Different User Groups

Besides performance comparison and parameter experi-
ment, we explore how user’s attributes influence the accu-
racy of location prediction through our model. We select two
attributes of user mobility: the number of different places
the user visited, and the entropy [28] of the trajectory which
measures the irregularity of user’s movement. The entropy
Sen is given by,

Sen =
n∑
i=1

−Pi ∗ log(Pi), (32)

where Pi is the proportion of frequency user visits i − th
place while n is the total number of different places the user
has been to.

We divide all the users into three groups by the num-
ber of visited different places and into four groups by
the entropy of the trajectory and separately calculate the
accuracy for each group. From Fig. 8 (a), we can observe
that the prediction accuracy of our model decreases while
GeoGaussHMM increases as the number of different places
the user has visited get larger. Therefore, we show that our
model mainly improves the performance for users who visit
fewer locations. From Fig. 8 (b), we can observe that the
prediction accuracy of our model decreases as the entropy
grows except when entropy is very small (which implies the
case when the number of records of the user is very limited).
This result is coherent to our common sense: the more
irregular the trajectory, the harder it is to make predictions.

4.6 Discussions

There are strong relations between users, time, space and
POI types. On one hand, traditional methods cannot effec-
tively capture all these factors for human mobility modeling.
On the other hand, although deep learning can lead to
a good performance, it often suffers from its poor inter-
pretability, which is important for mobility modeling. Our
model uses graph embedding method, a representation
learning method, which successively takes all factors into
account including times, locations, users, POI types to im-
prove mobility modeling. Note that the POI types can also
be replaced by words in tweeter, app usage information, or
anything that can bring semantics to the trajectory.

Our method can automatically extract features from data
including semantics. Based on the constructed semantics-
rich latent space, we improve the quality of both user group-
ing and mobility modeling. For both user grouping and mo-
bility modeling, the vectors near the centers of hidden states,
which represent different kinds of information, can imply
the semantics of them, so we can understand the results
better. The mobility patterns of several user groups learned
by our model can help us understand human mobility better
and benefit personalized location-based services.
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In this paper, we only extract the co-occurrence rela-
tionship of different kinds of items. We also can add more
complex relationship such as the proximity between times
and the transmission relationship between locations. Also,
we can use the graph embedding method to bring semantics
to improve other traditional trajectory tasks, such as local
events detection and urban function discovery.

5 APPLICATIONS AND DISCUSSION

In this section, we discuss the wide range of applicability
of our proposed system and introduce how to adapt it to
different scenarios or different data from three aspects.

5.1 Adaption to Different Semantic Fields
Our proposed system can use semantic fields in the tra-
jectory records to improve the prediction accuracy. Such
semantic fields include not only POI types but also various
fields. For example, for the twitter data, each record consists
of a time stamp, a location and a message. Each message can
be regarded as a set of words, which can bring semantics like
the POI in our data. We can construct a heterogeneous graph
with nodes representing time stamps, locations and words.
Even the mobile app usage attached on the trajectory may
provide semantics, which may improve prediction accuracy.

If the data have more than one semantic fields, we can
also construct a larger heterogeneous graph that contains
more types of nodes, such as time units, locations, POIs
and words in messages. Overall, our system is a uniform
framework for introducing semantics to the raw trajectories
to improve prediction accuracy, which can be easily adapted
to various trajectories dataset with different semantic infor-
mation.

5.2 Temporal Density
For different types of trajectory data, the temporal density
of one user’s trajectory varies from several records per day
to hundreds of records per day. There is a difference in pre-
processing for dense and sparse trajectory data. Our dataset
collected by a localization platform is relatively dense. There
are many continues records at the same locations with very
little time difference. Also, there are some records generated
when the user is moving such as walking or driving a car.
Such records are very detailed, however, we want to use
meaningful locations. Thus, we extract several stays where
the user mainly spent his time by setting time and spatial
thresholds and filter out the pass-by points.

For the sparse dataset, such as check-in data, there may
be only several records in one day for one user. However,
there is a strong correlation when the time between the two
records is small and there is a very weak correlation when
the time is long. Thus, we need to divide one whole trajec-
tory into several segments in which the time between two
adjacent records is always less than a time threshold such
as one hour. Thus, we can use the segments of trajectories
for HMM learning. For sparse data, there is another problem
that the data may be not sufficient for training one HMM for
each user. To tackle this problem, we need to cluster users

with similar mobility into one group to make the data more
sufficient for HMM learning.

5.3 Space Partition

There are different ways to partition the two-dimensional
space composed of latitudes and longitudes for different
demands, such as the grids or blocks. A data-driven way
to partition the geological space is to cluster the locations
by the algorithms of DBSCAN [29] or mean-shift [30] etc.,
which can automatically detect the densely located area. No
matter how to partition the space, we will obtain regions
as the nodes in the graph for embedding, where our frame-
work is applicable.

Naturally, the spatial granularity will directly effect on
the precision of prediction. Too coarse-grained regions sig-
nificantly limit the applications of prediction, while too fine-
grained regions lead to a numerous number of spatial units,
which decrease the co-occurrence edges linked to it, i.e.,
make the graph sparse. In general, we partition the space
according to the prediction demand.

6 RELATED WORK
We summarize the closely related works from three aspects:
trajectory-based mobility model, semantic-aware mobility
model, and embedding-based spatial-temporal knowledge
discovery.

Trajectory-based mobility model: Extensive studies
have been dedicated to model human mobility via large-
scale trajectory data recorded by GPS, cellular towers and
location-based service [1], [2], [25], [28], [31], [32], [33].
Gonzalez et al. [1] study mobile cellular accessing trace
and discover that human trajectories show a high degree of
temporal and spatial regularity. Lu et al. [31] discover that
the theoretical maximum predictability of human mobility
is as high as 88%. Various works [2], [3], [4], [5] focus on
mobility modelling for next location prediction. Baumann et
al. [6] compare the performance of 18 prediction algorithms
and present a model with high overall prediction accuracy
which meanwhile reliably predicts transitions. So as to solve
data sparsity problem in location prediction, Jeong et al.
[34] propose a cluster-aided model which exploits past
trajectories collected from all users while Mcinerney et al.
[35] develop a Bayesian model of mobility in populations.
Wang et al. [36] propose a method for location prediction
which takes both the mobility regularity and social confor-
mity into account. Liu et al. [37] extend RNN into spatial-
temporal recurrent neural networks (ST-RNN) for next place
prediction by temporal and spatial information. Feng et al.
[38] use RNN with attention model for location prediction,
which can capture the multi-order properties in trajectories.
One limitation of all these trajectory-based mobility models,
however, is that this group of models do not properly
capture semantics behind human mobility since they only
take into account spatial and temporal information in tra-
jectory data. Therefore they fail to provide insights as why
people move from one location to another. In contrast, we
develop a mobility model which jointly considers spatial,
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temporal and user motivation in trajectory data as a whole
to understand human mobility.

Semantics-aware mobility model: Recently, several
semantic-aware mobility models have been proposed [39],
[40] for spatial-temporal data. The most relevant works are
those on modelling semantic-rich location data from geo-
tagged social media (GeoSM) as twitter and foursquare. Ye
et al. [7] propose a mobility model to predict user activity at
next step. Yuan et al. [9] propose a who+when+where+what
model to jointly model user spatial-temporal topics. Zhang
et al. [8] develop a group-level mobility model named
GMove for GeoSM data, which includes a sampling-based
keyword augmentation. Different from them, we incorpo-
rate representation learning method with Hidden Markov
Model and propose a novel semantic-aware mobility model,
which learns inner semantics embedded in human mobility
in an unsupervised way instead of manually combining spa-
tial, temporal and topic features. Our model thus achieves
better performance than previous works.

Embedding-based spatial-temporal knowledge discov-
ery: Embedding, or representation learning is a category of
unsupervised learning method that aims to extract effective
and low-dimensional features from complicated and high-
dimensional data [27], [41], [42], [43]. Recently representa-
tion learning methods have been used for spatial-temporal
data mining and knowledge discovery. Yao et al. [44] de-
signed a recurrent neural network to capture the physical
features of trajectories to detect trajectories that are similar
in speed and acceleration patterns. Inspired by PTE [45],
Zhang et al. [15] dynamically model the semantic meaning
of spatial-temporal points based on their co-occurrence with
the texts in social media’s check-ins through constructing
a spatial-temporal-textual network. Yan et al. [46] adapt
skip-gram model [42] for learning the representations of
place types, and Cao et al. [11] propose representation
learning based framework to embed trajectory semantics
for living pattern recognition in population. Zhang et al.
[21] propose a embedding-based method for online local
event detection. For applications in location-based POI rec-
ommendation, graph-based representation learning method
[47] and word2vec-inspired model [48] have been presented.
Furthermore, Qian et al. [49] conduct knowledge graph em-
bedding to capture the semantics. Yin et al. [50] aim to tackle
the problem of the sparsity of user-POI matrix and cold-
start issues for POI recommendation. Note that, location-
based POI recommendation aims to recommend some POIs
given user, time and location, however, mobility modeling
focus on the transition patterns, which often predict the
location given the previous location and the user. Yin et
al. [51] exploit graph embedding for joint event partner
recommendation. Chen et al. [52] propose a novel method
of heterogenous information network embedding for link
prediction. Zhao et al. [53] propose spatial-temporal latent
ranking to model the impact of time for POI recommen-
dation. Different from previous works, in this paper we
first introduce representation learning method in mobil-
ity modeling and propose a semantic-aware model, which
contributes to our understanding of the interplay between
spatial, temporal and semantic aspects in human mobility
and achieves better prediction performance.

This paper is an extended work comparing to its con-

ference version [54], which adds detailed algorithms to
train our proposed model, additional experiments of perfor-
mance comparison on different user groups and discussions
with deeper insights of our proposed model.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed a semantics-aware hidden
Markov model for human mobility modeling using large-
scale semantics-rich spatial-temporal datasets. Distinct from
existing studies, we took into account location, time, activity
and user motivation behind human mobility as a whole. We
first conducted multimodal embedding to jointly map these
information into the same low-dimensional space with their
correlations preserved. Then we designed hidden Markov
model to learn latent states and transitions between them
in the embedding space. We also proposed a vMF mixture
model for clustering users so as to tackle data sparsity
problem. We have evaluated our model on two datasets for
the location prediction, and it outperforms baseline methods
significantly.

In the future, we plan to adapt our framework to take
more semantic information (e. g. app usage and tweets)
into account to better describe the user activity patterns.
Moreover, we plan to leverage deep learning to automati-
cally extract the semantics in the trajectories to improve user
grouping and location prediction.
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